
Package: data.table (via r-universe)
November 3, 2024

Version 1.16.99

Title Extension of `data.frame`

Depends R (>= 3.3.0)

Imports methods

Suggests bit64 (>= 4.0.0), bit (>= 4.0.4), R.utils, xts, zoo (>=
1.8-1), yaml, knitr, markdown

Description Fast aggregation of large data (e.g. 100GB in RAM), fast
ordered joins, fast add/modify/delete of columns by group using
no copies at all, list columns, friendly and fast
character-separated-value read/write. Offers a natural and
flexible syntax, for faster development.

License MPL-2.0 | file LICENSE

URL https://r-datatable.com, https://Rdatatable.gitlab.io/data.table,

https://github.com/Rdatatable/data.table

BugReports https://github.com/Rdatatable/data.table/issues

VignetteBuilder knitr

Encoding UTF-8

ByteCompile TRUE

Repository https://rdatatable.r-universe.dev

RemoteUrl https://github.com/rdatatable/data.table

RemoteRef HEAD

RemoteSha 6a15f8617de121a406cee97b22e83e0c2c4bb034

Contents
data.table-package . 3
.Last.updated . 14
:= . 15
address . 19
all.equal . 20

1

https://r-datatable.com
https://Rdatatable.gitlab.io/data.table
https://github.com/Rdatatable/data.table
https://github.com/Rdatatable/data.table/issues

2 Contents

as.data.table . 22
as.data.table.xts . 23
as.matrix . 24
as.xts.data.table . 25
between . 26
cdt . 28
chmatch . 28
copy . 30
data.table-class . 31
datatable.optimize . 32
dcast.data.table . 35
duplicated . 38
fcase . 41
fcoalesce . 43
fdroplevels . 44
fifelse . 45
foverlaps . 46
frank . 49
fread . 51
fsort . 60
fwrite . 61
groupingsets . 66
IDateTime . 68
J . 72
last . 73
like . 74
measure . 76
melt.data.table . 77
merge . 81
na.omit.data.table . 83
nafill . 85
notin . 86
patterns . 87
print.data.table . 88
rbindlist . 91
rleid . 93
roll . 94
rowid . 98
rowwiseDT . 99
setattr . 100
setcolorder . 102
setDF . 103
setDT . 104
setDTthreads . 106
setkey . 108
setNumericRounding . 111
setops . 112
setorder . 114

data.table-package 3

shift . 116
shouldPrint . 118
special-symbols . 119
split . 121
subset.data.table . 123
substitute2 . 124
tables . 126
test . 127
test.data.table . 129
timetaken . 130
transpose . 131
truelength . 132
tstrsplit . 134
update_dev_pkg . 135

Index 137

data.table-package Enhanced data.frame

Description

data.table inherits from data.frame. It offers fast and memory efficient: file reader and writer,
aggregations, updates, equi, non-equi, rolling, range and interval joins, in a short and flexible syntax,
for faster development.

It is inspired by A[B] syntax in R where A is a matrix and B is a 2-column matrix. Since a
data.table is a data.frame, it is compatible with R functions and packages that accept only
data.frames.

Type vignette(package="data.table") to get started. The Introduction to data.table vignette
introduces data.table’s x[i, j, by] syntax and is a good place to start. If you have read the
vignettes and the help page below, please read the data.table support guide.

Please check the homepage for up to the minute live NEWS.

Tip: one of the quickest ways to learn the features is to type example(data.table) and study the
output at the prompt.

Usage

data.table(..., keep.rownames=FALSE, check.names=FALSE, key=NULL, stringsAsFactors=FALSE)

S3 method for class 'data.table'
x[i, j, by, keyby, with = TRUE,
nomatch = NA,
mult = "all",
roll = FALSE,
rollends = if (roll=="nearest") c(TRUE,TRUE)

else if (roll>=0) c(FALSE,TRUE)
else c(TRUE,FALSE),

../doc/datatable-intro.html
https://github.com/Rdatatable/data.table/wiki/Support
https://github.com/Rdatatable/data.table/wiki

4 data.table-package

which = FALSE,
.SDcols,
verbose = getOption("datatable.verbose"), # default: FALSE
allow.cartesian = getOption("datatable.allow.cartesian"), # default: FALSE
drop = NULL, on = NULL, env = NULL,
showProgress = getOption("datatable.showProgress", interactive())]

Arguments

... Just as ... in data.frame. Usual recycling rules are applied to vectors of dif-
ferent lengths to create a list of equal length vectors.

keep.rownames If ... is a matrix or data.frame, TRUE will retain the rownames of that object
in a column named rn.

check.names Just as check.names in data.frame.

key Character vector of one or more column names which is passed to setkey.
stringsAsFactors

Logical (default is FALSE). Convert all character columns to factors?

x A data.table.

i Integer, logical or character vector, single column numeric matrix, expression
of column names, list, data.frame or data.table.
integer and logical vectors work the same way they do in [.data.frame
except logical NAs are treated as FALSE.
expression is evaluated within the frame of the data.table (i.e. it sees column
names as if they are variables) and can evaluate to any of the other types.
character, list and data.frame input to i is converted into a data.table
internally using as.data.table.
If i is a data.table, the columns in i to be matched against x can be specified
using one of these ways:

• on argument (see below). It allows for both equi- and the newly imple-
mented non-equi joins.

• If not, x must be keyed. Key can be set using setkey. If i is also keyed,
then first key column of i is matched against first key column of x, second
against second, etc..
If i is not keyed, then first column of i is matched against first key column
of x, second column of i against second key column of x, etc. . .
This is summarised in code as min(length(key(x)), if (haskey(i)) length(key(i))
else ncol(i)).

Using on= is recommended (even during keyed joins) as it helps understand the
code better and also allows for non-equi joins.
When the binary operator == alone is used, an equi join is performed. In SQL
terms, x[i] then performs a right join by default. i prefixed with ! signals a
not-join or not-select.
Support for non-equi join was recently implemented, which allows for other
binary operators >=, >, <= and <.
See vignette("datatable-keys-fast-subset") and vignette("datatable-secondary-indices-and-auto-indexing").

../doc/datatable-keys-fast-subset.html
../doc/datatable-secondary-indices-and-auto-indexing.html

data.table-package 5

Advanced: When i is a single variable name, it is not considered an expression
of column names and is instead evaluated in calling scope.

j When with=TRUE (default), j is evaluated within the frame of the data.table;
i.e., it sees column names as if they are variables. This allows to not just select
columns in j, but also compute on them e.g., x[, a] and x[, sum(a)] returns
x$a and sum(x$a) as a vector respectively. x[, .(a, b)] and x[, .(sa=sum(a),
sb=sum(b))] returns a two column data.table each, the first simply selecting
columns a, b and the second computing their sums.
As long as j returns a list, each element of the list becomes a column in the
resulting data.table. When the output of j is not a list, the output is returned
as-is (e.g. x[, a] returns the column vector a), unless by is used, in which case
it is implicitly wrapped in list for convenience (e.g. x[, sum(a), by=b] will
create a column named V1 with value sum(a) for each group).
The expression .() is a shorthand alias to list(); they both mean the same.
(An exception is made for the use of .() within a call to bquote, where .() is
left unchanged.)
When j is a vector of column names or positions to select (as in data.frame),
there is no need to use with=FALSE. Note that with=FALSE is still necessary
when using a logical vector with length ncol(x) to include/exclude columns.
Note: if a logical vector with length k < ncol(x) is passed, it will be filled to
length ncol(x) with FALSE, which is different from data.frame, where the
vector is recycled.
Advanced: j also allows the use of special read-only symbols: .SD, .N, .I,
.GRP, .BY. See special-symbols and the Examples below for more.
Advanced: When i is a data.table, the columns of i can be referred to in j by
using the prefix i., e.g., X[Y, .(val, i.val)]. Here val refers to X’s column
and i.val Y’s.
Advanced: Columns of x can now be referred to using the prefix x. and is par-
ticularly useful during joining to refer to x’s join columns as they are otherwise
masked by i’s. For example, X[Y, .(x.a-i.a, b), on="a"].
See vignette("datatable-intro") and example(data.table).

by Column names are seen as if they are variables (as in j when with=TRUE). The
data.table is then grouped by the by and j is evaluated within each group. The
order of the rows within each group is preserved, as is the order of the groups.
by accepts:

• A single unquoted column name: e.g., DT[, .(sa=sum(a)), by=x]

• a list() of expressions of column names: e.g., DT[, .(sa=sum(a)), by=.(x=x>0,
y)]

• a single character string containing comma separated column names (where
spaces are significant since column names may contain spaces even at the
start or end): e.g., DT[, sum(a), by="x,y,z"]

• a character vector of column names: e.g., DT[, sum(a), by=c("x", "y")]

• or of the form startcol:endcol: e.g., DT[, sum(a), by=x:z]

Advanced: When i is a list (or data.frame or data.table), DT[i, j, by=.EACHI]
evaluates j for the groups in DT that each row in i joins to. That is, you can join
(in i) and aggregate (in j) simultaneously. We call this grouping by each i.

../doc/datatable-intro.html

6 data.table-package

See this StackOverflow answer for a more detailed explanation until we roll out
vignettes.
Advanced: In the X[Y, j] form of grouping, the j expression sees variables in
X first, then Y. We call this join inherited scope. If the variable is not in X or Y
then the calling frame is searched, its calling frame, and so on in the usual way
up to and including the global environment.

keyby Same as by, but with an additional setkey() run on the by columns of the result,
for convenience. It is common practice to use keyby= routinely when you wish
the result to be sorted. May also be TRUE or FALSE when by is provided as an
alternative way to accomplish the same operation.

with By default with=TRUE and j is evaluated within the frame of x; column names
can be used as variables. In case of overlapping variables names inside dataset
and in parent scope you can use double dot prefix ..cols to explicitly refer to
cols variable parent scope and not from your dataset.
When j is a character vector of column names, a numeric vector of column posi-
tions to select or of the form startcol:endcol, and the value returned is always
a data.table. with=FALSE is not necessary anymore to select columns dy-
namically. Note that x[, cols] is equivalent to x[, ..cols] and to x[, cols,
with=FALSE] and to x[, .SD, .SDcols=cols].

nomatch When a row in i has no match to x, nomatch=NA (default) means NA is returned.
NULL (or 0 for backward compatibility) means no rows will be returned for that
row of i.

mult When i is a list (or data.frame or data.table) and multiple rows in x match
to the row in i, mult controls which are returned: "all" (default), "first" or
"last".

roll When i is a data.table and its row matches to all but the last x join column,
and its value in the last i join column falls in a gap (including after the last
observation in x for that group), then:

• +Inf (or TRUE) rolls the prevailing value in x forward. It is also known as
last observation carried forward (LOCF).

• -Inf rolls backwards instead; i.e., next observation carried backward (NOCB).
• finite positive or negative number limits how far values are carried forward

or backward.
• "nearest" rolls the nearest value instead.

Rolling joins apply to the last join column, generally a date but can be any
variable. It is particularly fast using a modified binary search.
A common idiom is to select a contemporaneous regular time series (dts) across
a set of identifiers (ids): DT[CJ(ids,dts),roll=TRUE] where DT has a 2-
column key (id,date) and CJ stands for cross join.

rollends A logical vector length 2 (a single logical is recycled) indicating whether values
falling before the first value or after the last value for a group should be rolled
as well.

• If rollends[2]=TRUE, it will roll the last value forward. TRUE by default
for LOCF and FALSE for NOCB rolls.

https://stackoverflow.com/a/27004566/559784
https://github.com/Rdatatable/data.table/issues/944
https://github.com/Rdatatable/data.table/issues/944

data.table-package 7

• If rollends[1]=TRUE, it will roll the first value backward. TRUE by default
for NOCB and FALSE for LOCF rolls.

When roll is a finite number, that limit is also applied when rolling the ends.

which TRUE returns the row numbers of x that i matches to. If NA, returns the row
numbers of i that have no match in x. By default FALSE and the rows in x that
match are returned.

.SDcols Specifies the columns of x to be included in the special symbol .SD which stands
for Subset of data.table. May be character column names, numeric posi-
tions, logical, a function name such as is.numeric, or a function call such as
patterns(). .SDcols is particularly useful for speed when applying a func-
tion through a subset of (possible very many) columns by group; e.g., DT[,
lapply(.SD, sum), by="x,y", .SDcols=301:350].
For convenient interactive use, the form startcol:endcol is also allowed (as
in by), e.g., DT[, lapply(.SD, sum), by=x:y, .SDcols=a:f].
Inversion (column dropping instead of keeping) can be accomplished be prepend-
ing the argument with ! or - (there’s no difference between these), e.g. .SDcols
= !c('x', 'y').
Finally, you can filter columns to include in .SD based on their names according
to regular expressions via .SDcols=patterns(regex1, regex2, ...). The in-
cluded columns will be the intersection of the columns identified by each pat-
tern; pattern unions can easily be specified with | in a regex. You can filter
columns on values by passing a function, e.g. .SDcols=is.numeric. You can
also invert a pattern as usual with .SDcols=!patterns(...) or .SDcols=!is.numeric.

verbose TRUE turns on status and information messages to the console. Turn this on by
default using options(datatable.verbose=TRUE). The quantity and types of
verbosity may be expanded in future.

allow.cartesian

FALSE prevents joins that would result in more than nrow(x)+nrow(i) rows.
This is usually caused by duplicate values in i’s join columns, each of which
join to the same group in x over and over again: a misspecified join. Usually
this was not intended and the join needs to be changed. The word ’cartesian’
is used loosely in this context. The traditional cartesian join is (deliberately)
difficult to achieve in data.table: where every row in i joins to every row in
x (a nrow(x)*nrow(i) row result). ’cartesian’ is just meant in a ’large multi-
plicative’ sense, so FALSE does not always prevent a traditional cartesian join.

drop Never used by data.table. Do not use. It needs to be here because data.table
inherits from data.frame. See vignette("datatable-faq").

on Indicate which columns in x should be joined with which columns in i along
with the type of binary operator to join with (see non-equi joins below on this).
When specified, this overrides the keys set on x and i. When .NATURAL key-
word provided then natural join is made (join on common columns). There are
multiple ways of specifying the on argument:

• As an unnamed character vector, e.g., X[Y, on=c("a", "b")], used when
columns a and b are common to both X and Y.

• Foreign key joins: As a named character vector when the join columns have
different names in X and Y. For example, X[Y, on=c(x1="y1", x2="y2")]

../doc/datatable-faq.html

8 data.table-package

joins X and Y by matching columns x1 and x2 in X with columns y1 and y2
in Y, respectively.
From v1.9.8, you can also express foreign key joins using the binary oper-
ator ==, e.g. X[Y, on=c("x1==y1", "x2==y2")].
NB: shorthand like X[Y, on=c("a", V2="b")] is also possible if, e.g., col-
umn "a" is common between the two tables.

• For convenience during interactive scenarios, it is also possible to use .()
syntax as X[Y, on=.(a, b)].

• From v1.9.8, (non-equi) joins using binary operators >=, >, <=, < are also
possible, e.g., X[Y, on=c("x>=a", "y<=b")], or for interactive use as X[Y,
on=.(x>=a, y<=b)].

See examples as well as vignette("datatable-secondary-indices-and-auto-indexing").

env List or an environment, passed to substitute2 for substitution of parameters
in i, j and by (or keyby). Use verbose to preview constructed expressions. For
more details see vignette("datatable-programming").

showProgress TRUE shows progress indicator with estimated time to completion for lengthy
"by" operations.

Details

data.table builds on base R functionality to reduce 2 types of time:

1. programming time (easier to write, read, debug and maintain), and

2. compute time (fast and memory efficient).

The general form of data.table syntax is:

DT[i, j, by] # + extra arguments
| | |
| | -------> grouped by what?
| -------> what to do?
---> on which rows?

The way to read this out loud is: "Take DT, subset rows by i, then compute j grouped by by. Here
are some basic usage examples expanding on this definition. See the vignette (and examples) for
working examples.

X[, a] # return col 'a' from X as vector. If not found, search in parent frame.
X[, .(a)] # same as above, but return as a data.table.

X[, sum(a)] # return sum(a) as a vector (with same scoping rules as above)
X[, .(sum(a)), by=c] # get sum(a) grouped by 'c'.

X[, sum(a), by=c] # same as above, .() can be omitted in j and by on single expression for convenience
X[, sum(a), by=c:f] # get sum(a) grouped by all columns in between 'c' and 'f' (both inclusive)

X[, sum(a), keyby=b] # get sum(a) grouped by 'b', and sort that result by the grouping column 'b'

../doc/datatable-secondary-indices-and-auto-indexing.html
../doc/datatable-programming.html

data.table-package 9

X[, sum(a), by=b, keyby=TRUE] # same order as above, but using sorting flag
X[, sum(a), by=b][order(b)] # same order as above, but by chaining compound expressions
X[c>1, sum(a), by=c] # get rows where c>1 is TRUE, and on those rows, get sum(a) grouped by 'c'
X[Y, .(a, b), on="c"] # get rows where Y$c == X$c, and select columns 'X$a' and 'X$b' for those rows
X[Y, .(a, i.a), on="c"] # get rows where Y$c == X$c, and then select 'X$a' and 'Y$a' (=i.a)
X[Y, sum(a*i.a), on="c", by=.EACHI] # for *each* 'Y$c', get sum(a*i.a) on matching rows in 'X$c'

X[, plot(a, b), by=c] # j accepts any expression, generates plot for each group and returns no data
see ?assign to add/update/delete columns by reference using the same consistent interface

A data.table query may be invoked on a data.frame using functional form DT(...), see exam-
ples. The class of the input is retained.

A data.table is a list of vectors, just like a data.frame. However :

1. it never has or uses rownames. Rownames based indexing can be done by setting a key of one
or more columns or done ad-hoc using the on argument (now preferred).

2. it has enhanced functionality in [.data.table for fast joins of keyed tables, fast aggrega-
tion, fast last observation carried forward (LOCF) and fast add/modify/delete of columns by
reference with no copy at all.

See the see also section for the several other methods that are available for operating on data.tables
efficiently.

Note

If keep.rownames or check.names are supplied they must be written in full because R does not al-
low partial argument names after For example, data.table(DF, keep=TRUE) will create a col-
umn called keep containing TRUE and this is correct behaviour; data.table(DF, keep.rownames=TRUE)
was intended.

POSIXlt is not supported as a column type because it uses 40 bytes to store a single datetime. They
are implicitly converted to POSIXct type with warning. You may also be interested in IDateTime
instead; it has methods to convert to and from POSIXlt.

References

https://r-datatable.com (data.table homepage)
https://en.wikipedia.org/wiki/Binary_search

See Also

special-symbols, data.frame, [.data.frame, as.data.table, setkey, setorder, setDT, setDF,
J, SJ, CJ, merge.data.table, tables, test.data.table, IDateTime, unique.data.table, copy,
:=, setalloccol, truelength, rbindlist, setNumericRounding, datatable-optimize, fsetdiff,
funion, fintersect, fsetequal, anyDuplicated, uniqueN, rowid, rleid, na.omit, frank,
rowwiseDT

https://r-datatable.com
https://en.wikipedia.org/wiki/Binary_search

10 data.table-package

Examples

Not run:
example(data.table) # to run these examples yourself

End(Not run)
DF = data.frame(x=rep(c("b","a","c"),each=3), y=c(1,3,6), v=1:9)
DT = data.table(x=rep(c("b","a","c"),each=3), y=c(1,3,6), v=1:9)
DF
DT
identical(dim(DT), dim(DF)) # TRUE
identical(DFa, DTa) # TRUE
is.list(DF) # TRUE
is.list(DT) # TRUE

is.data.frame(DT) # TRUE

tables()

basic row subset operations
DT[2] # 2nd row
DT[3:2] # 3rd and 2nd row
DT[order(x)] # no need for order(DT$x)
DT[order(x),] # same as above. The ',' is optional
DT[y>2] # all rows where DT$y > 2
DT[y>2 & v>5] # compound logical expressions
DT[!2:4] # all rows other than 2:4
DT[-(2:4)] # same

select|compute columns data.table way
DT[, v] # v column (as vector)
DT[, list(v)] # v column (as data.table)
DT[, .(v)] # same as above, .() is a shorthand alias to list()
DT[, sum(v)] # sum of column v, returned as vector
DT[, .(sum(v))] # same, but return data.table (column autonamed V1)
DT[, .(sv=sum(v))] # same, but column named "sv"
DT[, .(v, v*2)] # return two column data.table, v and v*2

subset rows and select|compute data.table way
DT[2:3, sum(v)] # sum(v) over rows 2 and 3, return vector
DT[2:3, .(sum(v))] # same, but return data.table with column V1
DT[2:3, .(sv=sum(v))] # same, but return data.table with column sv
DT[2:5, cat(v, "\n")] # just for j's side effect

select columns the data.frame way
DT[, 2] # 2nd column, returns a data.table always
colNum = 2
DT[, ..colNum] # same, .. prefix conveys one-level-up in calling scope
DT[["v"]] # same as DT[, v] but faster if called in a loop

grouping operations - j and by
DT[, sum(v), by=x] # ad hoc by, order of groups preserved in result
DT[, sum(v), keyby=x] # same, but order the result on by cols

data.table-package 11

DT[, sum(v), by=x, keyby=TRUE] # same, but using sorting flag
DT[, sum(v), by=x][order(x)] # same but by chaining expressions together

fast ad hoc row subsets (subsets as joins)
DT["a", on="x"] # same as x == "a" but uses binary search (fast)
DT["a", on=.(x)] # same, for convenience, no need to quote every column
DT[.("a"), on="x"] # same
DT[x=="a"] # same, single "==" internally optimised to use binary search (fast)
DT[x!="b" | y!=3] # not yet optimized, currently vector scan subset
DT[.("b", 3), on=c("x", "y")] # join on columns x,y of DT; uses binary search (fast)
DT[.("b", 3), on=.(x, y)] # same, but using on=.()
DT[.("b", 1:2), on=c("x", "y")] # no match returns NA
DT[.("b", 1:2), on=.(x, y), nomatch=NULL] # no match row is not returned
DT[.("b", 1:2), on=c("x", "y"), roll=Inf] # locf, nomatch row gets rolled by previous row
DT[.("b", 1:2), on=.(x, y), roll=-Inf] # nocb, nomatch row gets rolled by next row
DT["b", sum(v*y), on="x"] # on rows where DT$x=="b", calculate sum(v*y)

all together now
DT[x!="a", sum(v), by=x] # get sum(v) by "x" for each i != "a"
DT[!"a", sum(v), by=.EACHI, on="x"] # same, but using subsets-as-joins
DT[c("b","c"), sum(v), by=.EACHI, on="x"] # same
DT[c("b","c"), sum(v), by=.EACHI, on=.(x)] # same, using on=.()

joins as subsets
X = data.table(x=c("c","b"), v=8:7, foo=c(4,2))
X

DT[X, on="x"] # right join
X[DT, on="x"] # left join
DT[X, on="x", nomatch=NULL] # inner join
DT[!X, on="x"] # not join
DT[X, on=c(y="v")] # join using column "y" of DT with column "v" of X
DT[X, on="y==v"] # same as above (v1.9.8+)

DT[X, on=.(y<=foo)] # NEW non-equi join (v1.9.8+)
DT[X, on="y<=foo"] # same as above
DT[X, on=c("y<=foo")] # same as above
DT[X, on=.(y>=foo)] # NEW non-equi join (v1.9.8+)
DT[X, on=.(x, y<=foo)] # NEW non-equi join (v1.9.8+)
DT[X, .(x,y,x.y,v), on=.(x, y>=foo)] # Select x's join columns as well

DT[X, on="x", mult="first"] # first row of each group
DT[X, on="x", mult="last"] # last row of each group
DT[X, sum(v), by=.EACHI, on="x"] # join and eval j for each row in i
DT[X, sum(v)*foo, by=.EACHI, on="x"] # join inherited scope
DT[X, sum(v)*i.v, by=.EACHI, on="x"] # 'i,v' refers to X's v column
DT[X, on=.(x, v>=v), sum(y)*foo, by=.EACHI] # NEW non-equi join with by=.EACHI (v1.9.8+)

setting keys
kDT = copy(DT) # (deep) copy DT to kDT to work with it.
setkey(kDT,x) # set a 1-column key. No quotes, for convenience.
setkeyv(kDT,"x") # same (v in setkeyv stands for vector)
v="x"

12 data.table-package

setkeyv(kDT,v) # same
haskey(kDT) # TRUE
key(kDT) # "x"

fast *keyed* subsets
kDT["a"] # subset-as-join on *key* column 'x'
kDT["a", on="x"] # same, being explicit using 'on=' (preferred)

all together
kDT[!"a", sum(v), by=.EACHI] # get sum(v) for each i != "a"

multi-column key
setkey(kDT,x,y) # 2-column key
setkeyv(kDT,c("x","y")) # same

fast *keyed* subsets on multi-column key
kDT["a"] # join to 1st column of key
kDT["a", on="x"] # on= is optional, but is preferred
kDT[.("a")] # same, .() is an alias for list()
kDT[list("a")] # same
kDT[.("a", 3)] # join to 2 columns
kDT[.("a", 3:6)] # join 4 rows (2 missing)
kDT[.("a", 3:6), nomatch=NULL] # remove missing
kDT[.("a", 3:6), roll=TRUE] # locf rolling join
kDT[.("a", 3:6), roll=Inf] # same as above
kDT[.("a", 3:6), roll=-Inf] # nocb rolling join
kDT[!.("a")] # not join
kDT[!"a"] # same

more on special symbols, see also ?"special-symbols"
DT[.N] # last row
DT[, .N] # total number of rows in DT
DT[, .N, by=x] # number of rows in each group
DT[, .SD, .SDcols=x:y] # select columns 'x' through 'y'
DT[, .SD, .SDcols = !x:y] # drop columns 'x' through 'y'
DT[, .SD, .SDcols = patterns('^[xv]')] # select columns matching '^x' or '^v'
DT[, .SD[1]] # first row of all columns
DT[, .SD[1], by=x] # first row of 'y' and 'v' for each group in 'x'
DT[, c(.N, lapply(.SD, sum)), by=x] # get rows *and* sum columns 'v' and 'y' by group
DT[, .I[1], by=x] # row number in DT corresponding to each group
DT[, grp := .GRP, by=x] # add a group counter column
DT[, dput(.BY), by=.(x,y)] # .BY is a list of singletons for each group
X[, DT[.BY, y, on="x"], by=x] # join within each group
DT[, {

write each group to a different file
fwrite(.SD, file.path(tempdir(), paste0('x=', .BY$x, '.csv')))

}, by=x]
dir(tempdir())

add/update/delete by reference (see ?assign)
print(DT[, z:=42L]) # add new column by reference
print(DT[, z:=NULL]) # remove column by reference
print(DT["a", v:=42L, on="x"]) # subassign to existing v column by reference

data.table-package 13

print(DT["b", v2:=84L, on="x"]) # subassign to new column by reference (NA padded)

DT[, m:=mean(v), by=x][] # add new column by reference by group
NB: postfix [] is shortcut to print()

advanced usage
DT = data.table(x=rep(c("b","a","c"),each=3), v=c(1,1,1,2,2,1,1,2,2), y=c(1,3,6), a=1:9, b=9:1)

DT[, sum(v), by=.(y%%2)] # expressions in by
DT[, sum(v), by=.(bool = y%%2)] # same, using a named list to change by column name
DT[, .SD[2], by=x] # get 2nd row of each group
DT[, tail(.SD,2), by=x] # last 2 rows of each group
DT[, lapply(.SD, sum), by=x] # sum of all (other) columns for each group
DT[, .SD[which.min(v)], by=x] # nested query by group

DT[, list(MySum=sum(v),
MyMin=min(v),
MyMax=max(v)),

by=.(x, y%%2)] # by 2 expressions

DT[, .(a = .(a), b = .(b)), by=x] # list columns
DT[, .(seq = min(a):max(b)), by=x] # j is not limited to just aggregations
DT[, sum(v), by=x][V1<20] # compound query
DT[, sum(v), by=x][order(-V1)] # ordering results
DT[, c(.N, lapply(.SD,sum)), by=x] # get number of observations and sum per group
DT[, {tmp <- mean(y);

.(a = a-tmp, b = b-tmp)
}, by=x] # anonymous lambda in 'j', j accepts any valid

expression. TO REMEMBER: every element of
the list becomes a column in result.

pdf("new.pdf")
DT[, plot(a,b), by=x] # can also plot in 'j'
dev.off()

using rleid, get max(y) and min of all cols in .SDcols for each consecutive run of 'v'
DT[, c(.(y=max(y)), lapply(.SD, min)), by=rleid(v), .SDcols=v:b]

Support guide and links:
https://github.com/Rdatatable/data.table/wiki/Support

Not run:
if (interactive()) {

vignette(package="data.table") # 9 vignettes

test.data.table() # 6,000 tests

keep up to date with latest stable version on CRAN
update.packages()

get the latest devel version that has passed all tests
update_dev_pkg()
read more at:
https://github.com/Rdatatable/data.table/wiki/Installation

14 .Last.updated

}

End(Not run)

.Last.updated Number of rows affected by last update

Description

Returns number of rows affected by last := or set().

Usage

.Last.updated

Details

Be aware that in the case of duplicate indices, multiple updates occur (duplicates are overwritten);
.Last.updated will include all of the updates performed, including duplicated ones. See examples.

Value

Integer.

See Also

:=

Examples

d = data.table(a=1:4, b=2:5)
d[2:3, z:=5L]
.Last.updated

updated count takes duplicates into account #2837
DT = data.table(a = 1L)
DT[c(1L, 1L), a := 2:3]
.Last.updated

:= 15

:= Assignment by reference

Description

Fast add, remove and update subsets of columns, by reference. := operator can be used in two ways:
LHS := RHS form, and Functional form. See Usage.

set is a low-overhead loop-able version of :=. It is particularly useful for repetitively updating rows
of certain columns by reference (using a for-loop). See Examples. It can not perform grouping
operations.

let is an alias for the functional form and behaves exactly like `:=`.

Usage

1. LHS := RHS form
DT[i, LHS := RHS, by = ...]
DT[i, c("LHS1", "LHS2") := list(RHS1, RHS2), by = ...]

2a. Functional form with `:=`
DT[i, `:=`(LHS1 = RHS1,
LHS2 = RHS2,
...), by = ...]

2b. Functional form with let
DT[i, let(LHS1 = RHS1,
LHS2 = RHS2,
...), by = ...]

3. Multiple columns in place
DT[i, names(.SD) := lapply(.SD, fx), by = ..., .SDcols = ...]

set(x, i = NULL, j, value)

Arguments

LHS A character vector of column names (or numeric positions) or a variable that
evaluates as such. If the column doesn’t exist, it is added, by reference.

RHS A list of replacement values. It is recycled in the usual way to fill the number of
rows satisfying i, if any. To remove a column use NULL.

x A data.table. Or, set() accepts data.frame, too.

i Optional. Indicates the rows on which the values must be updated. If not NULL,
implies all rows. Missing or zero values are ignored. The := form is more
powerful as it allows adding/updating columns by reference based on subsets
and joins. See Details.

16 :=

In set, only integer type is allowed in i indicating which rows value should
be assigned to. NULL represents all rows more efficiently than creating a vector
such as 1:nrow(x).

j Column name(s) (character) or number(s) (integer) to be assigned value when
column(s) already exist, and only column name(s) if they are to be created.

value A list of replacement values to assign by reference to x[i, j].

Details

:= is defined for use in j only. It adds or updates or removes column(s) by reference. It makes no
copies of any part of memory at all. Please read vignette("datatable-reference-semantics")
and follow with examples. Some typical usages are:

DT[, col := val] # update (or add at the end if doesn't exist) a column called "col" with value "val" (recycled if necessary).
DT[i, col := val] # same as above, but only for those rows specified in i and (for new columns) NA elsewhere.
DT[i, "col a" := val] # same. column is called "col a"

DT[i, (3:6) := val] # update existing columns 3:6 with value. Aside: parens are not required here since : already makes LHS a call rather than a symbol.
DT[i, colvector := val, with = FALSE] # OLD syntax. The contents of "colvector" in calling scope determine the column(s).
DT[i, (colvector) := val] # same (NOW PREFERRED) shorthand syntax. The parens are enough to stop the LHS being a symbol; same as c(colvector).
DT[i, colC := mean(colB), by = colA] # update (or add) column called "colC" by reference by group. A major feature of `:=`.
DT[,`:=`(new1 = sum(colB), new2 = sum(colC))] # Functional form
DT[, let(new1 = sum(colB), new2 = sum(colC))] # New alias for functional form.

The .Last.updated variable contains the number of rows updated by the most recent := or set
calls, which may be useful, for example, in production settings for testing assumptions about the
number of rows affected by a statement; see .Last.updated for details.

Note that for efficiency no check is performed for duplicate assignments, i.e. if multiple values
are passed for assignment to the same index, assignment to this index will occur repeatedly and
sequentially; for a given use case, consider whether it makes sense to create your own test for
duplicates, e.g. in production code.

All of the following result in a friendly error (by design) :

x := 1L
DT[i, col] := val
DT[i]$col := val

DT[, {col1 := 1L; col2 := 2L}] # Use the functional form, `:=`(), instead (see above).

For additional resources, please read vignette("datatable-faq"). Also have a look at Stack-
Overflow’s data.table tag.

:= in j can be combined with all types of i (such as binary search), and all types of by. This a one
reason why := has been implemented in j. Please see vignette("datatable-reference-semantics")
and also FAQ 2.16 for analogies to SQL.

When LHS is a factor column and RHS is a character vector with items missing from the factor levels,
the new level(s) are automatically added (by reference, efficiently), unlike base methods.

Unlike <- for data.frame, the (potentially large) LHS is not coerced to match the type of the
(often small) RHS. Instead the RHS is coerced to match the type of the LHS, if necessary. Where

../doc/datatable-reference-semantics.html
../doc/datatable-faq.html
https://stackoverflow.com/questions/tagged/data.table/

:= 17

this involves double precision values being coerced to an integer column, a warning is given when
fractional data is truncated. It is best to get the column types correct up front and stick to them.
Changing a column type is possible but deliberately harder: provide a whole column as the RHS.
This RHS is then plonked into that column slot and we call this plonk syntax, or replace column
syntax if you prefer. By needing to construct a full length vector of a new type, you as the user are
more aware of what is happening and it is clearer to readers of your code that you really do intend
to change the column type; e.g., DT[, colA:=as.integer(colA)]. A plonk occurs whenever you
provide a RHS value to ‘:=‘ which is nrow long. When a column is plonked, the original column
is not updated by reference because that would entail updating every single element of that column
whereas the plonk is just one column pointer update.

data.tables are not copied-on-change by :=, setkey or any of the other set* functions. See
copy.

Value

DT is modified by reference and returned invisibly. If you require a copy, take a copy first (using
DT2 = copy(DT)).

Advanced (internals):

It is easy to see how sub-assigning to existing columns is done internally. Removing columns by
reference is also straightforward by modifying the vector of column pointers only (using memmove
in C). However adding (new) columns is more tricky as to how the data.table can be grown by
reference: the list vector of column pointers is over-allocated, see truelength. By defining := in
j we believe update syntax is natural, and scales, but it also bypasses [<- dispatch and allows := to
update by reference with no copies of any part of memory at all.

Since [.data.table incurs overhead to check the existence and type of arguments (for example),
set() provides direct (but less flexible) assignment by reference with low overhead, appropriate
for use inside a for loop. See examples. := is more powerful and flexible than set() because := is
intended to be combined with i and by in single queries on large datasets.

Note

DT[a > 4, b := c] is different from DT[a > 4][, b := c]. The first expression updates (or adds)
column b with the value c on those rows where a > 4 evaluates to TRUE. X is updated by reference,
therefore no assignment needed. Note that this does not apply when ‘i‘ is missing, i.e. DT[].

The second expression on the other hand updates a new data.table that’s returned by the subset
operation. Since the subsetted data.table is ephemeral (it is not assigned to a symbol), the result
would be lost; unless the result is assigned, for example, as follows: ans <- DT[a > 4][, b := c].

See Also

data.table, copy, setalloccol, truelength, set, .Last.updated

Examples

DT = data.table(a = LETTERS[c(3L,1:3)], b = 4:7)
DT[, c := 8] # add a numeric column, 8 for all rows
DT[, d := 9L] # add an integer column, 9L for all rows

18 :=

DT[, c := NULL] # remove column c
DT[2, d := -8L] # subassign by reference to d; 2nd row is -8L now
DT # DT changed by reference
DT[2, d := 10L][] # shorthand for update and print

DT[b > 4, b := d * 2L] # subassign to b with d*2L on those rows where b > 4 is TRUE
DT[b > 4][, b := d * 2L] # different from above. [, :=] is performed on the subset

which is an new (ephemeral) data.table. Result needs to be
assigned to a variable (using `<-`).

DT[, e := mean(d), by = a] # add new column by group by reference
DT["A", b := 0L, on = "a"] # ad-hoc update of column b for group "A" using

joins-as-subsets with binary search and 'on='
same as above but using keys
setkey(DT, a)
DT["A", b := 0L] # binary search for group "A" and set column b using keys
DT["B", f := mean(d)] # subassign to new column, NA initialized

Adding multiple columns
by name
DT[, c('sin_d', 'log_e', 'cos_d') :=

.(sin(d), log(e), cos(d))]
by patterned name
DT[, paste(c('sin', 'cos'), 'b', sep = '_') :=

.(sin(b), cos(b))]
using lapply & .SD
DT[, paste0('tan_', c('b', 'd', 'e')) :=

lapply(.SD, tan), .SDcols = c('b', 'd', 'e')]
using forced evaluation to disambiguate a vector of names
and overwrite existing columns with their squares
sq_cols = c('b', 'd', 'e')
DT[, (sq_cols) := lapply(.SD, `^`, 2L), .SDcols = sq_cols]
by integer (NB: for robustness, it is not recommended
to use explicit integers to update/define columns)
DT[, c(2L, 3L, 4L) := .(sqrt(b), sqrt(d), sqrt(e))]
by implicit integer
DT[, grep('a$', names(DT)) := tolower(a)]
by implicit integer, using forced evaluation
sq_col_idx = grep('d$', names(DT))
DT[, (sq_col_idx) := lapply(.SD, dnorm),

.SDcols = sq_col_idx]

Examples using `set` function
Set value for single cell
set(DT, 1L, "b", 10L)
Set values for multiple columns in a specific row
set(DT, 2L, c("b", "d"), list(20L, 30L))
Set values by column indices
set(DT, 3L, c(2L, 4L), list(40L, 50L))
Set value for an entire column without specifying rows
set(DT, j = "b", value = 100L)
set(DT, NULL, "b", 100L) # equivalent
Set values for multiple columns without specifying rows

address 19

set(DT, j = c("b", "d"), value = list(200L, 300L))
Set values for multiple columns with multiple specified rows.
set(DT, c(1L, 3L), c("b", "d"), value = list(500L, 800L))

Not run:
Speed example:

m = matrix(1, nrow = 2e6L, ncol = 100L)
DF = as.data.frame(m)
DT = as.data.table(m)

system.time(for (i in 1:1000) DF[i, 1] = i)
15.856 seconds
system.time(for (i in 1:1000) DT[i, V1 := i])
0.279 seconds (57 times faster)
system.time(for (i in 1:1000) set(DT, i, 1L, i))
0.002 seconds (7930 times faster, overhead of [.data.table is avoided)

However, normally, we call [.data.table *once* on *large* data, not many times on small data.
The above is to demonstrate overhead, not to recommend looping in this way. But the option
of set() is there if you need it.

End(Not run)

address Address in RAM of a variable

Description

Returns the pointer address of its argument.

Usage

address(x)

Arguments

x Anything.

Details

Sometimes useful in determining whether a value has been copied or not, programmatically.

Value

A character vector length 1.

20 all.equal

References

https://stackoverflow.com/a/10913296/403310 (but implemented in C without using .Internal(inspect()))

See Also

copy

Examples

x=1
address(x)

all.equal Equality Test Between Two Data Tables

Description

Convenient test of data equality between data.table objects. Performs some factor level stripping.

Usage

S3 method for class 'data.table'
all.equal(target, current, trim.levels=TRUE, check.attributes=TRUE,

ignore.col.order=FALSE, ignore.row.order=FALSE, tolerance=sqrt(.Machine$double.eps),
...)

Arguments

target, current data.tables to compare. If current is not a data.table, but check.attributes
is FALSE, it will be coerced to one via as.data.table.

trim.levels A logical indicating whether or not to remove all unused levels in columns that
are factors before running equality check. It effect only when check.attributes
is TRUE and ignore.row.order is FALSE.

check.attributes

A logical indicating whether or not to check attributes, will apply not only to
data.table but also attributes of the columns. It will skip c("row.names",".internal.selfref")
data.table attributes.

ignore.col.order

A logical indicating whether or not to ignore columns order in data.table.
ignore.row.order

A logical indicating whether or not to ignore rows order in data.table. This
option requires datasets to use data types on which join can be made, so no
support for list, complex, raw, but still supports integer64.

tolerance A numeric value used when comparing numeric columns, by default sqrt(.Machine$double.eps).
Unless non-default value provided it will be forced to 0 if used together with
ignore.row.order and duplicate rows detected or factor columns present.

... Passed down to internal call of all.equal.

https://stackoverflow.com/a/10913296/403310

all.equal 21

Details

For efficiency data.table method will exit on detected non-equality issues, unlike most all.equal
methods which process equality checks further. Besides that fact it also handles the most time
consuming case of ignore.row.order = TRUE very efficiently.

Value

Either TRUE or a vector of mode "character" describing the differences between target and
current.

See Also

all.equal

Examples

dt1 <- data.table(A = letters[1:10], X = 1:10, key = "A")
dt2 <- data.table(A = letters[5:14], Y = 1:10, key = "A")
isTRUE(all.equal(dt1, dt1))
is.character(all.equal(dt1, dt2))

ignore.col.order
x <- copy(dt1)
y <- dt1[, .(X, A)]
all.equal(x, y)
all.equal(x, y, ignore.col.order = TRUE)

ignore.row.order
x <- setkeyv(copy(dt1), NULL)
y <- dt1[sample(nrow(dt1))]
all.equal(x, y)
all.equal(x, y, ignore.row.order = TRUE)

check.attributes
x = copy(dt1)
y = setkeyv(copy(dt1), NULL)
all.equal(x, y)
all.equal(x, y, check.attributes = FALSE)
x = data.table(1L)
y = 1L
all.equal(x, y)
all.equal(x, y, check.attributes = FALSE)

trim.levels
x <- data.table(A = factor(letters[1:10])[1:4]) # 10 levels
y <- data.table(A = factor(letters[1:5])[1:4]) # 5 levels
all.equal(x, y, trim.levels = FALSE)
all.equal(x, y, trim.levels = FALSE, check.attributes = FALSE)
all.equal(x, y)

22 as.data.table

as.data.table Coerce to data.table

Description

Functions to check if an object is data.table, or coerce it if possible.

Usage

as.data.table(x, keep.rownames=FALSE, ...)

S3 method for class 'data.table'
as.data.table(x, ...)

S3 method for class 'array'
as.data.table(x, keep.rownames=FALSE, key=NULL, sorted=TRUE,

value.name="value", na.rm=TRUE, ...)

is.data.table(x)

Arguments

x An R object.

keep.rownames Default is FALSE. If TRUE, adds the input object’s names as a separate column
named "rn". keep.rownames = "id" names the column "id" instead.

key Character vector of one or more column names which is passed to setkeyv.

sorted logical used in array method, default TRUE is overridden when key is provided.

value.name character scalar used in array method, default "value".

na.rm logical used in array method, default TRUE will remove rows with NA values.

... Additional arguments to be passed to or from other methods.

Details

as.data.table is a generic function with many methods, and other packages can supply further
methods.

If a list is supplied, each element is converted to a column in the data.table with shorter ele-
ments recycled automatically. Similarly, each column of a matrix is converted separately.

character objects are not converted to factor types unlike as.data.frame.

If a data.frame is supplied, all classes preceding "data.frame" are stripped. Similarly, for
data.table as input, all classes preceding "data.table" are stripped. as.data.table methods
returns a copy of original data. To modify by reference see setDT and setDF.

keep.rownames argument can be used to preserve the (row)names attribute in the resulting data.table.

as.data.table.xts 23

See Also

data.table, setDT, setDF, copy, setkey, J, SJ, CJ, merge.data.table, :=, setalloccol, truelength,
rbindlist, setNumericRounding, datatable-optimize

Examples

nn = c(a=0.1, b=0.2, c=0.3, d=0.4)
as.data.table(nn)
as.data.table(nn, keep.rownames=TRUE)
as.data.table(nn, keep.rownames="rownames")

char object not converted to factor
cc = c(X="a", Y="b", Z="c")
as.data.table(cc)
as.data.table(cc, keep.rownames=TRUE)
as.data.table(cc, keep.rownames="rownames")

mm = matrix(1:4, ncol=2, dimnames=list(c("r1", "r2"), c("c1", "c2")))
as.data.table(mm)
as.data.table(mm, keep.rownames=TRUE)
as.data.table(mm, keep.rownames="rownames")
as.data.table(mm, key="c1")

ll = list(a=1:2, b=3:4)
as.data.table(ll)
as.data.table(ll, keep.rownames=TRUE)
as.data.table(ll, keep.rownames="rownames")

DF = data.frame(x=rep(c("x","y","z"),each=2), y=c(1,3,6), row.names=LETTERS[1:6])
as.data.table(DF)
as.data.table(DF, keep.rownames=TRUE)
as.data.table(DF, keep.rownames="rownames")

DT = data.table(x=rep(c("x","y","z"),each=2), y=c(1:6))
as.data.table(DT)
as.data.table(DT, key='x')

ar = rnorm(27)
ar[sample(27, 15)] = NA
dim(ar) = c(3L,3L,3L)
as.data.table(ar)

as.data.table.xts Efficient xts to as.data.table conversion

Description

Efficient conversion xts to data.table.

24 as.matrix

Usage

S3 method for class 'xts'
as.data.table(x, keep.rownames = TRUE, key=NULL, ...)

Arguments

x xts to convert to data.table

keep.rownames Default is TRUE. If TRUE, adds the xts input’s index as a separate column named
"index". keep.rownames = "id" names the index column "id" instead.

key Character vector of one or more column names which is passed to setkeyv.

... ignored, just for consistency with as.data.table

See Also

as.xts.data.table

Examples

if (requireNamespace("xts", quietly = TRUE)) {
data(sample_matrix, package = "xts")
sample.xts <- xts::as.xts(sample_matrix) # xts might not be attached on search path
print head of xts
print(head(sample.xts))
print data.table
print(as.data.table(sample.xts))

}

as.matrix Convert a data.table to a matrix

Description

Converts a data.table into a matrix, optionally using one of the columns in the data.table as
the matrix rownames.

Usage

S3 method for class 'data.table'
as.matrix(x, rownames=NULL, rownames.value=NULL, ...)

Arguments

x a data.table

rownames optional, a single column name or column number to use as the rownames in the
returned matrix. If TRUE the key of the data.table will be used if it is a single
column, otherwise the first column in the data.table will be used.

as.xts.data.table 25

rownames.value optional, a vector of values to be used as the rownames in the returned matrix.
It must be the same length as nrow(x).

... Required to be present because the generic ‘as.matrix‘ generic has it. Arguments
here are not currently used or passed on by this method.

Details

as.matrix is a generic function in base R. It dispatches to as.matrix.data.table if its x argu-
ment is a data.table.

The method for data.tables will return a character matrix if there are only atomic columns and any
non-(numeric/logical/complex) column, applying as.vector to factors and format to other non-
character columns. Otherwise, the usual coercion hierarchy (logical < integer < double < complex)
will be used, e.g., all-logical data frames will be coerced to a logical matrix, mixed logical-integer
will give an integer matrix, etc.

Value

A new matrix containing the contents of x.

See Also

data.table, as.matrix, data.matrix array

Examples

DT <- data.table(A = letters[1:10], X = 1:10, Y = 11:20)
as.matrix(DT) # character matrix
as.matrix(DT, rownames = "A")
as.matrix(DT, rownames = 1)
as.matrix(DT, rownames = TRUE)

setkey(DT, A)
as.matrix(DT, rownames = TRUE)

as.xts.data.table Efficient data.table to xts conversion

Description

Efficient conversion of data.table to xts, data.table must have a time based type in first column. See
?xts::timeBased for supported types

Usage

as.xts.data.table(x, numeric.only = TRUE, ...)

26 between

Arguments

x data.table to convert to xts, must have a time based first column. As xts ob-
jects are indexed matrixes, all columns must be of the same type. If columns
of multiple types are selected, standard as.matrix rules are applied during the
conversion.

numeric.only If TRUE, only include numeric columns in the conversion and all non-numeric
columns will be omitted with warning

... ignored, just for consistency with generic method.

See Also

as.data.table.xts

Examples

if (requireNamespace("xts", quietly = TRUE)) {
sample.dt <- data.table(date = as.Date((Sys.Date()-999):Sys.Date(),origin="1970-01-01"),

quantity = sample(10:50,1000,TRUE),
value = sample(100:1000,1000,TRUE))

print data.table
print(sample.dt)
print head of xts
print(head(as.xts.data.table(sample.dt))) # xts might not be attached on search path

}

between Convenience functions for range subsets.

Description

Intended for use in i in [.data.table.

between is equivalent to lower<=x & x<=upper when incbounds=TRUE, or lower<x & y<upper
when FALSE. With a caveat that NA in lower or upper are taken as unlimited bounds not NA. This
can be changed by setting NAbounds to NA.

inrange checks whether each value in x is in between any of the intervals provided in lower,upper.

Usage

between(x, lower, upper, incbounds=TRUE, NAbounds=TRUE, check=FALSE)
x %between% y

inrange(x, lower, upper, incbounds=TRUE)
x %inrange% y

between 27

Arguments

x Any orderable vector, i.e., those with relevant methods for `<=`, such as numeric,
character, Date, etc. in case of between and a numeric vector in case of
inrange.

lower Lower range bound. Either length 1 or same length as x.
upper Upper range bound. Either length 1 or same length as x.
y A length-2 vector or list, with y[[1]] interpreted as lower and y[[2]] as

upper.
incbounds TRUE means inclusive bounds, i.e., [lower,upper]. FALSE means exclusive bounds,

i.e., (lower,upper). It is set to TRUE by default for infix notations.
NAbounds If lower (upper) contains an NA what should lower<=x (x<=upper) return? By

default TRUE so that a missing bound is interpreted as unlimited.
check Produce error if any(lower>upper)? FALSE by default for efficiency, in partic-

ular type character.

Details

non-equi joins were implemented in v1.9.8. They extend binary search based joins in data.table
to other binary operators including >=, <=, >, <. inrange makes use of this new functionality and
performs a range join.

Value

Logical vector the same length as x with value TRUE for those that lie within the specified range.

Note

Current implementation does not make use of ordered keys for %between%.

See Also

data.table, like, %chin%

Examples

X = data.table(a=1:5, b=6:10, c=c(5:1))
X[b %between% c(7,9)]
X[between(b, 7, 9)] # same as above
NEW feature in v1.9.8, vectorised between
X[c %between% list(a,b)]
X[between(c, a, b)] # same as above
X[between(c, a, b, incbounds=FALSE)] # open interval

inrange()
Y = data.table(a=c(8,3,10,7,-10), val=runif(5))
range = data.table(start = 1:5, end = 6:10)
Y[a %inrange% range]
Y[inrange(a, range$start, range$end)] # same as above
Y[inrange(a, range$start, range$end, incbounds=FALSE)] # open interval

28 chmatch

cdt data.table exported C routines

Description

Some of internally used C routines are now exported. This interface should be considered experi-
mental. List of exported C routines and their signatures are provided below in the usage section.

Usage

SEXP DT_subsetDT(SEXP x, SEXP rows, SEXP cols);
p_DT_subsetDT = R_GetCCallable("data.table", "DT_subsetDT");

Details

Details how to use those can be found in Writing R Extensions manual Linking to native routines in
other packages section. An example use with Rcpp:

dt = data.table::as.data.table(iris)
Rcpp::cppFunction("SEXP mysub2(SEXP x, SEXP rows, SEXP cols) { return DT_subsetDT(x,rows,cols); }",

include="#include <datatableAPI.h>",
depends="data.table")

mysub2(dt, 1:4, 1:4)

Note

Be aware C routines are likely to have less input validation than their corresponding R inter-
face. For example one should not expect DT[-5L] will be equal to .Call(DT_subsetDT, DT, -5L,
seq_along(DT)) because translation of i=-5L to seq_len(nrow(DT))[-5L] might be happening
on R level. Moreover checks that i argument is in range of 1:nrow(DT), missingness, etc. might
be happening on R level too.

References

https://cran.r-project.org/doc/manuals/r-release/R-exts.html

chmatch Faster match of character vectors

Description

chmatch returns a vector of the positions of (first) matches of its first argument in its second. Both
arguments must be character vectors.

%chin% is like %in%, but for character vectors.

https://cran.r-project.org/doc/manuals/r-release/R-exts.html

chmatch 29

Usage

chmatch(x, table, nomatch=NA_integer_)
x %chin% table
chorder(x)
chgroup(x)

Arguments

x character vector: the values to be matched, or the values to be ordered or grouped

table character vector: the values to be matched against.

nomatch the value to be returned in the case when no match is found. Note that it is
coerced to integer.

Details

Fast versions of match, %in% and order, optimised for character vectors. chgroup groups together
duplicated values but retains the group order (according the first appearance order of each group),
efficiently. They have been primarily developed for internal use by data.table, but have been exposed
since that seemed appropriate.

Strings are already cached internally by R (CHARSXP) and that is utilised by these functions. No
hash table is built or cached, so the first call is the same speed as subsequent calls. Essentially,
a counting sort (similar to base::sort.list(x,method="radix"), see setkey) is implemented
using the (almost) unused truelength of CHARSXP as the counter. Where R has used truelength
of CHARSXP (where a character value is shared by a variable name), the non zero truelengths
are stored first and reinstated afterwards. Each of the ch* functions implements a variation on
this theme. Remember that internally in R, length of a CHARSXP is the nchar of the string and
DATAPTR is the string itself.

Methods that do build and cache a hash table (such as the fastmatch package) are much faster
on subsequent calls (almost instant) but a little slower on the first. Therefore chmatch may be
particularly suitable for ephemeral vectors (such as local variables in functions) or tasks that are
only done once. Much depends on the length of x and table, how many unique strings each
contains, and whether the position of the first match is all that is required.

It may be possible to speed up fastmatch’s hash table build time by using the technique in data.table,
and we have suggested this to its author. If successful, fastmatch would then be fastest in all cases.

Value

As match and %in%. chorder and chgroup return an integer index vector.

Note

The name charmatch was taken by charmatch, hence chmatch.

See Also

match, %in%

https://cran.r-project.org/package=fastmatch

30 copy

Examples

Please type 'example(chmatch)' to run this and see timings on your machine

N = 1e5
N is set small here (1e5) to reduce runtime because every day CRAN runs and checks
all documentation examples in addition to the package's test suite.
The comments here apply when N has been changed to 1e8 and were run on 2018-05-13
with R 3.5.0 and data.table 1.11.2.

u = as.character(as.hexmode(1:10000))
y = sample(u,N,replace=TRUE)
x = sample(u)

With N=1e8 ...
system.time(a <- match(x,y)) # 4.6s
system.time(b <- chmatch(x,y)) # 1.8s
identical(a,b)

system.time(a <- x %in% y) # 4.5s
system.time(b <- x %chin% y) # 1.7s
identical(a,b)

Different example with more unique strings ...
u = as.character(as.hexmode(1:(N/10)))
y = sample(u,N,replace=TRUE)
x = sample(u,N,replace=TRUE)
system.time(a <- match(x,y)) # 46s
system.time(b <- chmatch(x,y)) # 16s
identical(a,b)

copy Copy an entire object

Description

In data.table parlance, all set* functions change their input by reference. That is, no copy is
made at all, other than temporary working memory, which is as large as one column. The only
other data.table operator that modifies input by reference is :=. Check out the See Also section
below for other set* function data.table provides.

copy() copies an entire object.

Usage

copy(x)

Arguments

x A data.table.

data.table-class 31

Details

data.table provides functions that operate on objects by reference and minimise full object copies
as much as possible. Still, it might be necessary in some situations to work on an object’s copy
which can be done using DT.copy <- copy(DT). It may also be sometimes useful before := (or
set) is used to subassign to a column by reference.

A copy() may be required when doing dt_names = names(DT). Due to R’s copy-on-modify, dt_names
still points to the same location in memory as names(DT). Therefore modifying DT by reference now,
say by adding a new column, dt_names will also get updated. To avoid this, one has to explicitly
copy: dt_names <- copy(names(DT)).

Value

Returns a copy of the object.

Note

To confirm precisely whether an object is a copy of another, compare their exact memory address
with address.

See Also

data.table, address, setkey, setDT, setDF, set :=, setorder, setattr, setnames

Examples

Type 'example(copy)' to run these at prompt and browse output

DT = data.table(A=5:1,B=letters[5:1])
DT2 = copy(DT) # explicit copy() needed to copy a data.table
setkey(DT2,B) # now just changes DT2
identical(DT,DT2) # FALSE. DT and DT2 are now different tables

DT = data.table(A=5:1, B=letters[5:1])
nm1 = names(DT)
nm2 = copy(names(DT))
DT[, C := 1L]
identical(nm1, names(DT)) # TRUE, nm1 is also changed by reference
identical(nm2, names(DT)) # FALSE, nm2 is a copy, different from names(DT)

data.table-class S4 Definition for data.table

Description

A data.table can be used in S4 class definitions as either a parent class (inside a contains argu-
ment of setClass), or as an element of an S4 slot.

32 datatable.optimize

Author(s)

Steve Lianoglou

See Also

data.table

Examples

Used in inheritance.
setClass('SuperDataTable', contains='data.table')

Used in a slot
setClass('Something', representation(x='character', dt='data.table'))
x <- new("Something", x='check', dt=data.table(a=1:10, b=11:20))

datatable.optimize Optimisations in data.table

Description

data.table internally optimises certain expressions in order to improve performance. This section
briefly summarises those optimisations.

Note that there’s no additional input needed from the user to take advantage of these optimisations.
They happen automatically.

Run the code under the example section to get a feel for the performance benefits from these opti-
misations.

Note that for all optimizations involving efficient sorts, the caveat mentioned in setorder applies
– whenever data.table does the sorting, it does so in "C-locale". This has some subtle implications;
see Examples.

Details

data.table reads the global option datatable.optimize to figure out what level of optimisation
is required. The default value Inf activates all available optimisations.

At optimisation level >= 1, i.e., getOption("datatable.optimize") >= 1, these are the optimi-
sations:

• The base function order is internally replaced with data.table’s fast ordering. That is,
DT[order(...)] gets internally optimised to DT[forder(...)].

• The expression DT[, lapply(.SD, fun), by=.] gets optimised to DT[, list(fun(a), fun(b),
...), by=.] where a,b, ... are columns in .SD. This improves performance tremendously.

• Similarly, the expression DT[, c(.N, lapply(.SD, fun)), by=.] gets optimised to DT[,
list(.N, fun(a), fun(b), ...)]. .N is just for example here.

• base::mean function is internally optimised to use data.table’s fastmean function. mean()
from base is an S3 generic and gets slow with many groups.

datatable.optimize 33

At optimisation level >= 2, i.e., getOption("datatable.optimize") >= 2, additional optimisa-
tions are implemented on top of the optimisations already shown above.

• Expressions in j which contain only the functions min, max, mean, median, var, sd, sum,
prod, first, last, head, tail (for example, DT[, list(mean(x), median(x), min(y),
max(y)), by=z]), they are very effectively optimised using what we call GForce. These func-
tions are automatically replaced with a corresponding GForce version with pattern g*, e.g.,
prod becomes gprod.
Normally, once the rows belonging to each group are identified, the values corresponding to
the group are gathered and the j-expression is evaluated. This can be improved by computing
the result directly without having to gather the values or evaluating the expression for each
group (which can get costly with large number of groups) by implementing it specifically for
a particular function. As a result, it is extremely fast.

• In addition to all the functions above, ‘.N‘ is also optimised to use GForce, when used sep-
arately or when combined with the functions mentioned above. Note further that GForce-
optimized functions must be used separately, i.e., code like DT[, max(x) - min(x), by=z]
will not currently be optimized to use gmax, gmin.

• Expressions of the form DT[i, j, by] are also optimised when i is a subset operation and j
is any/all of the functions discussed above.

At optimisation level >= 3, i.e., getOption("datatable.optimize") >= 3, additional optimisa-
tions for subsets in i are implemented on top of the optimisations already shown above. Subsetting
operations are - if possible - translated into joins to make use of blazing fast binary search using
indices and keys. The following queries are optimized:

• Supported operators: ==, %in%. Non-equi operators(>, <, etc.) are not supported yet because
non-equi joins are slower than vector based subsets.

• Queries on multiple columns are supported, if the connector is ’&’, e.g. DT[x == 2 & y == 3] is
supported, but DT[x == 2 | y == 3] is not.

• Optimization will currently be turned off when doing subset when cross product of elements
provided to filter on exceeds > 1e4. This most likely happens if multiple %in%, or %chin%
queries are combined, e.g. DT[x %in% 1:100 & y %in% 1:200] will not be optimized since
100 * 200 = 2e4 > 1e4.

• Queries with multiple criteria on one column are not supported, e.g. DT[x == 2 & x %in%
c(2,5)] is not supported.

• Queries with non-missing j are supported, e.g. DT[x == 3 & y == 5, .(new = x-y)] or DT[x
== 3 & y == 5, new := x-y] are supported. Also extends to queries using with = FALSE.

• "notjoin" queries, i.e. queries that start with !, are only supported if there are no & connections,
e.g. DT[!x==3] is supported, but DT[!x==3 & y == 4] is not.

If in doubt, whether your query benefits from optimization, call it with the verbose = TRUE argu-
ment. You should see "Optimized subsetting. . . ".

Auto indexing: In case a query is optimized, but no appropriate key or index is found, data.table
automatically creates an index on the first run. Any successive subsets on the same column then
reuse this index to binary search (instead of vector scan) and is therefore fast. Auto indexing can
be switched off with the global option options(datatable.auto.index = FALSE). To switch off
using existing indices set global option options(datatable.use.index = FALSE).

34 datatable.optimize

See Also

setNumericRounding, getNumericRounding

Examples

Not run:
old = options(datatable.optimize = Inf)

Generate a big data.table with a relatively many columns
set.seed(1L)
DT = lapply(1:20, function(x) sample(c(-100:100), 5e6L, TRUE))
setDT(DT)[, id := sample(1e5, 5e6, TRUE)]
print(object.size(DT), units="Mb") # 400MB, not huge, but will do

'order' optimisation
options(datatable.optimize = 1L) # optimisation 'on'
system.time(ans1 <- DT[order(id)])
options(datatable.optimize = 0L) # optimisation 'off'
system.time(ans2 <- DT[order(id)])
identical(ans1, ans2)

optimisation of 'lapply(.SD, fun)'
options(datatable.optimize = 1L) # optimisation 'on'
system.time(ans1 <- DT[, lapply(.SD, min), by=id])
options(datatable.optimize = 0L) # optimisation 'off'
system.time(ans2 <- DT[, lapply(.SD, min), by=id])
identical(ans1, ans2)

optimisation of 'mean'
options(datatable.optimize = 1L) # optimisation 'on'
system.time(ans1 <- DT[, lapply(.SD, mean), by=id])
system.time(ans2 <- DT[, lapply(.SD, base::mean), by=id])
identical(ans1, ans2)

optimisation of 'c(.N, lapply(.SD,))'
options(datatable.optimize = 1L) # optimisation 'on'
system.time(ans1 <- DT[, c(.N, lapply(.SD, min)), by=id])
options(datatable.optimize = 0L) # optimisation 'off'
system.time(ans2 <- DT[, c(N=.N, lapply(.SD, min)), by=id])
identical(ans1, ans2)

GForce
options(datatable.optimize = 2L) # optimisation 'on'
system.time(ans1 <- DT[, lapply(.SD, median), by=id])
system.time(ans2 <- DT[, lapply(.SD, function(x) as.numeric(stats::median(x))), by=id])
identical(ans1, ans2)

optimized subsets
options(datatable.optimize = 2L)
system.time(ans1 <- DT[id == 100L]) # vector scan
system.time(ans2 <- DT[id == 100L]) # vector scan
system.time(DT[id %in% 100:500]) # vector scan

dcast.data.table 35

options(datatable.optimize = 3L)
system.time(ans1 <- DT[id == 100L]) # index + binary search subset
system.time(ans2 <- DT[id == 100L]) # only binary search subset
system.time(DT[id %in% 100:500]) # only binary search subset again

sensitivity to collate order
old_lc_collate = Sys.getlocale("LC_COLLATE")

if (old_lc_collate == "C") {
Sys.setlocale("LC_COLLATE", "")

}
DT = data.table(

grp = rep(1:2, each = 4L),
var = c("A", "a", "0", "1", "B", "b", "0", "1")

)
options(datatable.optimize = Inf)
DT[, .(max(var), min(var)), by=grp]
GForce is deactivated because of the ad-hoc column 'tolower(var)',
through which the result for 'max(var)' may also change
DT[, .(max(var), min(tolower(var))), by=grp]

Sys.setlocale("LC_COLLATE", old_lc_collate)
options(old)

End(Not run)

dcast.data.table Fast dcast for data.table

Description

dcast.data.table is data.table’s long-to-wide reshaping tool. In the spirit of data.table, it
is very fast and memory efficient, making it well-suited to handling large data sets in RAM. More
importantly, it is capable of handling very large data quite efficiently in terms of memory usage.
dcast.data.table can also cast multiple value.var columns and accepts multiple functions to
fun.aggregate. See Examples for more.

Usage

S3 method for class 'data.table'
dcast(data, formula, fun.aggregate = NULL, sep = "_",

..., margins = NULL, subset = NULL, fill = NULL,
drop = TRUE, value.var = guess(data),
verbose = getOption("datatable.verbose"),
value.var.in.dots = FALSE, value.var.in.LHSdots = value.var.in.dots,
value.var.in.RHSdots = value.var.in.dots)

36 dcast.data.table

Arguments

data A data.table.

formula A formula of the form LHS ~ RHS to cast, see Details.

fun.aggregate Should the data be aggregated before casting? If the formula doesn’t identify
a single observation for each cell, then aggregation defaults to length with a
warning of class ’dt_missing_fun_aggregate_warning’.
To use multiple aggregation functions, pass a list; see Examples.

sep Character vector of length 1, indicating the separating character in variable
names generated during casting. Default is _ for backwards compatibility.

... Any other arguments that may be passed to the aggregating function.

margins Not implemented yet. Should take variable names to compute margins on. A
value of TRUE would compute all margins.

subset Specified if casting should be done on a subset of the data. Ex: subset = .(col1
<= 5) or subset = .(variable != "January").

fill Value with which to fill missing cells. If fill=NULL and missing cells are
present, then fun.aggregate is used on a 0-length vector to obtain a fill value.

drop FALSE will cast by including all missing combinations.
c(FALSE, TRUE) will only include all missing combinations of formula LHS;
c(TRUE, FALSE) will only include all missing combinations of formula RHS.
See Examples.

value.var Name of the column whose values will be filled to cast. Function guess() tries
to, well, guess this column automatically, if none is provided.
Cast multiple value.var columns simultaneously by passing their names as a
character vector. See Examples.

verbose Not used yet. May be dropped in the future or used to provide informative
messages through the console.

value.var.in.dots

logical; value.var.in.dots = TRUE is shorthand to save setting both value.var.in.LHSdots
= TRUE and value.var.in.RHSdots = TRUE.

value.var.in.LHSdots

logical; if TRUE, ... in LHS of the formula includes value.var variables. The
default is FALSE, so that ... represents all variables not otherwise mentioned in
formula or value.var (including default/guessed value.var).

value.var.in.RHSdots

logical; analogous to value.var.in.LHSdots above, but with respect to RHS
of the formula.

Details

The cast formula takes the form LHS ~ RHS, ex: var1 + var2 ~ var3. The order of entries in the for-
mula is essential. There are two special variables: . represents no variable, while ... represents all
variables not otherwise mentioned in formula, and value.var depending on value.var.in.LHSdots
and value.var.in.RHSdots arguments; see Examples.

dcast.data.table 37

When not all combinations of LHS & RHS values are present in the data, some or all (in accordance
with drop) missing combinations will replaced with the value specified by fill. Note that fill
will be converted to the class of value.var; see Examples.

dcast also allows value.var columns of type list.

When variable combinations in formula don’t identify a unique value, fun.aggregate will have
to be specified, which defaults to length. For the formula var1 ~ var2, this means there are some
(var1, var2) combinations in the data corresponding to multiple rows (i.e. x is not unique by
(var1, var2).

The aggregating function should take a vector as input and return a single value (or a list of length
one) as output. In cases where value.var is a list, the function should be able to handle a list input
and provide a single value or list of length one as output.

If the formula’s LHS contains the same column more than once, ex: dcast(DT, x+x~ y), then
the answer will have duplicate names. In those cases, the duplicate names are renamed using
make.unique so that key can be set without issues.

Names for columns that are being cast are generated in the same order (separated by an underscore,
_) from the (unique) values in each column mentioned in the formula RHS.

From v1.9.4, dcast tries to preserve attributes wherever possible.

From v1.9.6, it is possible to cast multiple value.var columns and also cast by providing multiple
fun.aggregate functions. Multiple fun.aggregate functions should be provided as a list, for
e.g., list(mean, sum, function(x) paste(x, collapse=""). value.var can be either a char-
acter vector or list of length one, or a list of length equal to length(fun.aggregate). When
value.var is a character vector or a list of length one, each function mentioned under fun.aggregate
is applied to every column specified under value.var column. When value.var is a list of length
equal to length(fun.aggregate) each element of fun.aggregate is applied to each element of
value.var column.

Historical note: dcast.data.table was originally designed as an enhancement to reshape2::dcast
in terms of computing and memory efficiency. reshape2 has since been superseded in favour of
tidyr, and dcast has had a generic defined within data.table since v1.9.6 in 2015, at which
point the dependency between the packages became more etymological than programmatic. We
thank the reshape2 authors for the inspiration.

Value

A keyed data.table that has been cast. The key columns are equal to the variables in the formula
LHS in the same order.

See Also

melt.data.table, rowid, https://cran.r-project.org/package=reshape

Examples

ChickWeight = as.data.table(ChickWeight)
setnames(ChickWeight, tolower(names(ChickWeight)))
DT <- melt(as.data.table(ChickWeight), id.vars=2:4) # calls melt.data.table

dcast is an S3 method in data.table from v1.9.6

https://cran.r-project.org/package=reshape

38 duplicated

dcast(DT, time ~ variable, fun.aggregate=mean)
dcast(DT, diet ~ variable, fun.aggregate=mean)
dcast(DT, diet+chick ~ time, drop=FALSE)
dcast(DT, diet+chick ~ time, drop=FALSE, fill=0)

using subset
dcast(DT, chick ~ time, fun.aggregate=mean, subset=.(time < 10 & chick < 20))

drop argument, #1512
DT <- data.table(v1 = c(1.1, 1.1, 1.1, 2.2, 2.2, 2.2),

v2 = factor(c(1L, 1L, 1L, 3L, 3L, 3L), levels=1:3),
v3 = factor(c(2L, 3L, 5L, 1L, 2L, 6L), levels=1:6),
v4 = c(3L, 2L, 2L, 5L, 4L, 3L))

drop=TRUE
dcast(DT, v1+v2~v3, value.var='v4') # default is drop=TRUE
dcast(DT, v1+v2~v3, value.var='v4', drop=FALSE) # all missing combinations of LHS and RHS
dcast(DT, v1+v2~v3, value.var='v4', drop=c(FALSE, TRUE)) # all missing combinations of LHS only
dcast(DT, v1+v2~v3, value.var='v4', drop=c(TRUE, FALSE)) # all missing combinations of RHS only

using . and ...
DT <- data.table(v1 = rep(1:2, each = 6),

v2 = rep(rep(1:3, 2), each = 2),
v3 = rep(1:2, 6),
v4 = rnorm(6))

dcast(DT, ... ~ v3, value.var="v4") # same as v1+v2 ~ v3, value.var="v4"
dcast(DT, ... ~ v3, value.var="v4", value.var.in.dots=TRUE) # same as v1+v2+v4~v3, value.var="v4"
dcast(DT, v1+v2+v3 ~ ., value.var="v4")

for each combination of (v1, v2), add up all values of v4
dcast(DT, v1+v2 ~ ., value.var="v4", fun.aggregate=sum)

fill and types
dcast(DT, v2~v3, value.var='v1', fun.aggregate=length, fill=0L) # 0L --> 0
dcast(DT, v2~v3, value.var='v4', fun.aggregate=length, fill=1.1) # 1.1 --> 1L

multiple value.var and multiple fun.aggregate
DT = data.table(x=sample(5,20,TRUE), y=sample(2,20,TRUE),

z=sample(letters[1:2], 20,TRUE), d1=runif(20), d2=1L)
multiple value.var
dcast(DT, x+y ~ z, fun.aggregate=sum, value.var=c("d1","d2"))
multiple fun.aggregate
dcast(DT, x+y ~ z, fun.aggregate=list(sum, mean), value.var="d1")
multiple fun.agg and value.var (all combinations)
dcast(DT, x+y ~ z, fun.aggregate=list(sum, mean), value.var=c("d1", "d2"))
multiple fun.agg and value.var (one-to-one)
dcast(DT, x+y ~ z, fun.aggregate=list(sum, mean), value.var=list("d1", "d2"))

duplicated Determine Duplicate Rows

duplicated 39

Description

duplicated returns a logical vector indicating which rows of a data.table are duplicates of a row
with smaller subscripts.

unique returns a data.table with duplicated rows removed, by columns specified in by argument.
When no by then duplicated rows by all columns are removed.

anyDuplicated returns the index i of the first duplicated entry if there is one, and 0 otherwise.

uniqueN is equivalent to length(unique(x)) when x is an atomic vector, and nrow(unique(x))
when x is a data.frame or data.table. The number of unique rows are computed directly without
materialising the intermediate unique data.table and is therefore faster and memory efficient.

Usage

S3 method for class 'data.table'
duplicated(x, incomparables=FALSE, fromLast=FALSE, by=seq_along(x), ...)

S3 method for class 'data.table'
unique(x, incomparables=FALSE, fromLast=FALSE,
by=seq_along(x), cols=NULL, ...)

S3 method for class 'data.table'
anyDuplicated(x, incomparables=FALSE, fromLast=FALSE, by=seq_along(x), ...)

uniqueN(x, by=if (is.list(x)) seq_along(x) else NULL, na.rm=FALSE)

Arguments

x A data.table. uniqueN accepts atomic vectors and data.frames as well.

... Not used at this time.

incomparables Not used. Here for S3 method consistency.

fromLast Logical indicating if duplication should be considered from the reverse side. For
duplicated, this means the last (or rightmost) of identical elements will corre-
spond to duplicated = FALSE. For unique, this means the last (or rightmost) of
identical elements will be kept. See examples.

by character or integer vector indicating which combinations of columns from
x to use for uniqueness checks. By default all columns are being used. That was
changed recently for consistency to data.frame methods. In version < 1.9.8
default was key(x).

cols Columns (in addition to by) from x to include in the resulting data.table.

na.rm Logical (default is FALSE). Should missing values (including NaN) be removed?

Details

Because data.tables are usually sorted by key, tests for duplication are especially quick when only
the keyed columns are considered. Unlike unique.data.frame, paste is not used to ensure equal-
ity of floating point data. It is instead accomplished directly and is therefore quite fast. data.table

40 duplicated

provides setNumericRounding to handle cases where limitations in floating point representation is
undesirable.

v1.9.4 introduces anyDuplicated method for data.tables and is similar to base in functionality. It
also implements the logical argument fromLast for all three functions, with default value FALSE.

Note: When cols is specified, the resulting table will have columns c(by, cols), in that order.

Value

duplicated returns a logical vector of length nrow(x) indicating which rows are duplicates.

unique returns a data table with duplicated rows removed.

anyDuplicated returns a integer value with the index of first duplicate. If none exists, 0L is re-
turned.

uniqueN returns the number of unique elements in the vector, data.frame or data.table.

See Also

setNumericRounding, data.table, duplicated, unique, all.equal, fsetdiff, funion, fintersect,
fsetequal

Examples

DT <- data.table(A = rep(1:3, each=4), B = rep(1:4, each=3),
C = rep(1:2, 6), key = c("A", "B"))

duplicated(DT)
unique(DT)

duplicated(DT, by="B")
unique(DT, by="B")

duplicated(DT, by=c("A", "C"))
unique(DT, by=c("A", "C"))

DT = data.table(a=c(2L,1L,2L), b=c(1L,2L,1L)) # no key
unique(DT) # rows 1 and 2 (row 3 is a duplicate of row 1)

DT = data.table(a=c(3.142, 4.2, 4.2, 3.142, 1.223, 1.223), b=rep(1,6))
unique(DT) # rows 1,2 and 5

DT = data.table(a=tan(pi*(1/4 + 1:10)), b=rep(1,10)) # example from ?all.equal
length(unique(DT$a)) # 10 strictly unique floating point values
all.equal(DT$a,rep(1,10)) # TRUE, all within tolerance of 1.0
DT[,which.min(a)] # row 10, the strictly smallest floating point value
identical(unique(DT),DT[1]) # TRUE, stable within tolerance
identical(unique(DT),DT[10]) # FALSE

fromLast = TRUE vs. FALSE
DT <- data.table(A = c(1, 1, 2, 2, 3), B = c(1, 2, 1, 1, 2), C = c("a", "b", "a", "b", "a"))

duplicated(DT, by="B", fromLast=FALSE) # rows 3,4,5 are duplicates
unique(DT, by="B", fromLast=FALSE) # equivalent: DT[!duplicated(DT, by="B", fromLast=FALSE)]

fcase 41

duplicated(DT, by="B", fromLast=TRUE) # rows 1,2,3 are duplicates
unique(DT, by="B", fromLast=TRUE) # equivalent: DT[!duplicated(DT, by="B", fromLast=TRUE)]

anyDuplicated
anyDuplicated(DT, by=c("A", "B")) # 3L
any(duplicated(DT, by=c("A", "B"))) # TRUE

uniqueN, unique rows on key columns
uniqueN(DT, by = key(DT))
uniqueN, unique rows on all columns
uniqueN(DT)
uniqueN while grouped by "A"
DT[, .(uN=uniqueN(.SD)), by=A]

uniqueN's na.rm=TRUE
x = sample(c(NA, NaN, runif(3)), 10, TRUE)
uniqueN(x, na.rm = FALSE) # 5, default
uniqueN(x, na.rm=TRUE) # 3

fcase fcase

Description

fcase is a fast implementation of SQL CASE WHEN statement for R. Conceptually, fcase is a
nested version of fifelse (with smarter implementation than manual nesting). It is comparable
to dplyr::case_when and supports bit64’s integer64 and nanotime classes.

Usage

fcase(..., default=NA)

Arguments

... A sequence consisting of logical condition (when)-resulting value (value) pairs
in the following order when1, value1, when2, value2, ..., whenN, valueN.
Logical conditions when1, when2, ..., whenN must all have the same length,
type and attributes. Each value may either share length with when or be length
1. Please see Examples section for further details.

default Default return value, NA by default, for when all of the logical conditions when1,
when2, ..., whenN are FALSE or missing for some entries.

Details

fcase evaluates each when-value pair in order, until it finds a when that is TRUE. It then returns
the corresponding value. During evaluation, value will be evaluated regardless of whether the
corresponding when is TRUE or not, which means recursive calls should be placed in the last when-
value pair, see Examples.

default is always evaluated, regardless of whether it is returned or not.

42 fcase

Value

Vector with the same length as the logical conditions (when) in ..., filled with the corresponding
values (value) from ..., or eventually default. Attributes of output values value1, value2,
...valueN in ... are preserved.

See Also

fifelse

Examples

x = 1:10
fcase(
x < 5L, 1L,
x > 5L, 3L

)

fcase(
x < 5L, 1L:10L,
x > 5L, 3L:12L

)

Lazy evaluation example
fcase(
x < 5L, 1L,
x >= 5L, 3L,
x == 5L, stop("provided value is an unexpected one!")

)

fcase preserves attributes, example with dates
fcase(
x < 5L, as.Date("2019-10-11"),
x > 5L, as.Date("2019-10-14")

)

fcase example with factor; note the matching levels
fcase(
x < 5L, factor("a", levels=letters[1:3]),
x > 5L, factor("b", levels=letters[1:3])

)

Example of using the 'default' argument
fcase(
x < 5L, 1L,
x > 5L, 3L,
default = 5L

)

fcase can be used for recursion, unlike fifelse
Recursive function to calculate the Greatest Common Divisor
gcd_dt = function(x,y) {

r = x%%y

fcoalesce 43

fcase(!r, y, r, gcd_dt(x, y)) # Recursive call must be in the last when-value pair
}
gcd_dt(10L, 1L)

fcoalesce Coalescing missing values

Description

Fill in missing values in a vector by successively pulling from candidate vectors in order. As
per the ANSI SQL function COALESCE, dplyr::coalesce and hutils::coalesce. Unlike
BBmisc::coalesce which just returns the first non-NULL vector. Written in C, and multithreaded
for numeric and factor types.

Usage

fcoalesce(...)

Arguments

... A set of same-class vectors. These vectors can be supplied as separate arguments
or as a single plain list, data.table or data.frame, see examples.

Details

Factor type is supported only when the factor levels of each item are equal.

NaN is considered missing (note is.na(NaN) and all.equal(NA_real_, NaN) are both TRUE).

Value

Atomic vector of the same type and length as the first vector, having NA values replaced by corre-
sponding non-NA values from the other vectors. If the first item is NULL, the result is NULL.

See Also

fifelse

Examples

x = c(11L, NA, 13L, NA, 15L, NA)
y = c(NA, 12L, 5L, NA, NA, NA)
z = c(11L, NA, 1L, 14L, NA, NA)
fcoalesce(x, y, z)
fcoalesce(list(x,y,z)) # same
fcoalesce(x, list(y,z)) # same

44 fdroplevels

fdroplevels Fast droplevels

Description

Similar to base::droplevels but much faster.

Usage

fdroplevels(x, exclude = if (anyNA(levels(x))) NULL else NA, ...)
setdroplevels(x, except = NULL, exclude = NULL)

S3 method for class 'data.table'
droplevels(x, except = NULL, exclude, in.place = FALSE, ...)

Arguments

x factor or data.table where unused levels should be dropped.

exclude A character vector of factor levels which are dropped no matter of presented
or not.

except An integer vector of indices of data.table columns which are not modified by
dropping levels.

in.place logical (default is FALSE). If TRUE levels of factors of data.table are modified
in-place.

... further arguments passed to methods

Value

fdroplevels returns a factor.

droplevels returns a data.table where levels are dropped at factor columns.

See Also

data.table, duplicated, unique

Examples

on vectors
x = factor(letters[1:10])
fdroplevels(x[1:5])
exclude levels from drop
fdroplevels(x[1:5], exclude = c("a", "c"))

on data.table
DT = data.table(a = factor(1:10), b = factor(letters[1:10]))
droplevels(head(DT))[["b"]]
exclude levels

fifelse 45

droplevels(head(DT), exclude = c("b", "c"))[["b"]]
except columns from drop
droplevels(head(DT), except = 2)[["b"]]
droplevels(head(DT), except = 1)[["b"]]

fifelse Fast ifelse

Description

fifelse is a faster and more robust replacement of ifelse. It is comparable to dplyr::if_else
and hutils::if_else. It returns a value with the same length as test filled with correspond-
ing values from yes, no or eventually na, depending on test. Supports bit64’s integer64 and
nanotime classes.

Usage

fifelse(test, yes, no, na=NA)

Arguments

test A logical vector.

yes, no Values to return depending on TRUE/FALSE element of test. They must be the
same type and be either length 1 or the same length of test.

na Value to return if an element of test is NA. It must be the same type as yes and
no and its length must be either 1 or the same length of test. Default value NA.
NULL is treated as NA.

Details

In contrast to ifelse attributes are copied from the first non-NA argument to the output. This is
useful when returning Date, factor or other classes.

Unlike ifelse, fifelse evaluates both yes and no arguments for type checking regardless of the
result of test. This means that neither yes nor no should be recursive function calls. For recursion,
use fcase instead.

Value

A vector of the same length as test and attributes as yes. Data values are taken from the values of
yes and no, eventually na.

See Also

fcoalesce

fcase

46 foverlaps

Examples

x = c(1:4, 3:2, 1:4)
fifelse(x > 2L, x, x - 1L)

unlike ifelse, fifelse preserves attributes, taken from the 'yes' argument
dates = as.Date(c("2011-01-01","2011-01-02","2011-01-03","2011-01-04","2011-01-05"))
ifelse(dates == "2011-01-01", dates - 1, dates)
fifelse(dates == "2011-01-01", dates - 1, dates)
yes = factor(c("a","b","c"))
no = yes[1L]
ifelse(c(TRUE,FALSE,TRUE), yes, no)
fifelse(c(TRUE,FALSE,TRUE), yes, no)

Example of using the 'na' argument
fifelse(test = c(-5L:5L < 0L, NA), yes = 1L, no = 0L, na = 2L)

Example showing both 'yes' and 'no' arguments are evaluated, unlike ifelse
fifelse(1 == 1, print("yes"), print("no"))
ifelse(1 == 1, print("yes"), print("no"))

foverlaps Fast overlap joins

Description

A fast binary-search based overlap join of two data.tables. This is very much inspired by
findOverlaps function from the Bioconductor package IRanges (see link below under See Also).

Usually, x is a very large data.table with small interval ranges, and y is much smaller keyed data.table
with relatively larger interval spans. For a usage in genomics, see the examples section.

NOTE: This is still under development, meaning it is stable, but some features are yet to be imple-
mented. Also, some arguments and/or the function name itself could be changed.

Usage

foverlaps(x, y, by.x = if (!is.null(key(x))) key(x) else key(y),
by.y = key(y), maxgap = 0L, minoverlap = 1L,
type = c("any", "within", "start", "end", "equal"),
mult = c("all", "first", "last"),
nomatch = NA,
which = FALSE, verbose = getOption("datatable.verbose"))

Arguments

x, y data.tables. y needs to be keyed, but not necessarily x. See examples.

by.x, by.y A vector of column names (or numbers) to compute the overlap joins. The last
two columns in both by.x and by.y should each correspond to the start and
end interval columns in x and y respectively. And the start column should

foverlaps 47

always be <= end column. If x is keyed, by.x is equal to key(x), else key(y).
by.y defaults to key(y).

maxgap It should be a non-negative integer value, >= 0. Default is 0 (no gap). For in-
tervals [a,b] and [c,d], where a<=b and c<=d, when c > b or d < a, the two
intervals don’t overlap. If the gap between these two intervals is <= maxgap,
these two intervals are considered as overlapping. Note: This is not yet imple-
mented.

minoverlap It should be a positive integer value, > 0. Default is 1. For intervals [a,b] and
[c,d], where a<=b and c<=d, when c<=b and d>=a, the two intervals overlap. If
the length of overlap between these two intervals is >= minoverlap, then these
two intervals are considered to be overlapping. Note: This is not yet imple-
mented.

type Default value is any. Allowed values are any, within, start, end and equal.
The types shown here are identical in functionality to the function findOverlaps
in the bioconductor package IRanges. Let [a,b] and [c,d] be intervals in x
and y with a<=b and c<=d. For type="start", the intervals overlap iff a ==
c. For type="end", the intervals overlap iff b == d. For type="within", the
intervals overlap iff a>=c and b<=d. For type="equal", the intervals overlap iff
a==c and b==d. For type="any", as long as c<=b and d>=a, they overlap. In ad-
dition to these requirements, they also have to satisfy the minoverlap argument
as explained above.
NB: maxgap argument, when > 0, is to be interpreted according to the type of
the overlap. This will be updated once maxgap is implemented.

mult When multiple rows in y match to the row in x, mult=. controls which values
are returned - "all" (default), "first" or "last".

nomatch When a row (with interval say, [a,b]) in x has no match in y, nomatch=NA
(default) means NA is returned for y’s non-by.y columns for that row of x.
nomatch=NULL (or 0 for backward compatibility) means no rows will be re-
turned for that row of x.

which When TRUE, if mult="all" returns a two column data.table with the first
column corresponding to x’s row number and the second corresponding to y’s.
When nomatch=NA, no matches return NA for y, and if nomatch=NULL, those
rows where no match is found will be skipped; if mult="first" or "last", a
vector of length equal to the number of rows in x is returned, with no-match
entries filled with NA or 0 corresponding to the nomatch argument. Default is
FALSE, which returns a join with the rows in y.

verbose TRUE turns on status and information messages to the console. Turn this on by
default using options(datatable.verbose=TRUE). The quantity and types of
verbosity may be expanded in future.

Details

Very briefly, foverlaps() collapses the two-column interval in y to one-column of unique values
to generate a lookup table, and then performs the join depending on the type of overlap, using the
already available binary search feature of data.table. The time (and space) required to generate
the lookup is therefore proportional to the number of unique values present in the interval columns
of y when combined together.

48 foverlaps

Overlap joins takes advantage of the fact that y is sorted to speed-up finding overlaps. Therefore y
has to be keyed (see ?setkey) prior to running foverlaps(). A key on x is not necessary, although
it might speed things further. The columns in by.x argument should correspond to the columns
specified in by.y. The last two columns should be the interval columns in both by.x and by.y.
The first interval column in by.x should always be <= the second interval column in by.x, and
likewise for by.y. The storage.mode of the interval columns must be either double or integer.
It therefore works with bit64::integer64 type as well.

The lookup generation step could be quite time consuming if the number of unique values in y
are too large (ex: in the order of tens of millions). There might be improvements possible by
constructing lookup using RLE, which is a pending feature request. However most scenarios will
not have too many unique values for y.

Value

A new data.table by joining over the interval columns (along with other additional identifier
columns) specified in by.x and by.y.

NB: When which=TRUE: a) mult="first" or "last" returns a vector of matching row numbers
in y, and b) when mult="all" returns a data.table with two columns with the first containing row
numbers of x and the second column with corresponding row numbers of y.

nomatch=NA|NULL also influences whether non-matching rows are returned or not, as explained
above.

See Also

data.table, https://www.bioconductor.org/packages/release/bioc/html/IRanges.html,
setNumericRounding

Examples

require(data.table)
simple example:
x = data.table(start=c(5,31,22,16), end=c(8,50,25,18), val2 = 7:10)
y = data.table(start=c(10, 20, 30), end=c(15, 35, 45), val1 = 1:3)
setkey(y, start, end)
foverlaps(x, y, type="any", which=TRUE) ## return overlap indices
foverlaps(x, y, type="any") ## return overlap join
foverlaps(x, y, type="any", mult="first") ## returns only first match
foverlaps(x, y, type="within") ## matches iff 'x' is within 'y'

with extra identifiers (ex: in genomics)
x = data.table(chr=c("Chr1", "Chr1", "Chr2", "Chr2", "Chr2"),

start=c(5,10, 1, 25, 50), end=c(11,20,4,52,60))
y = data.table(chr=c("Chr1", "Chr1", "Chr2"), start=c(1, 15,1),

end=c(4, 18, 55), geneid=letters[1:3])
setkey(y, chr, start, end)
foverlaps(x, y, type="any", which=TRUE)
foverlaps(x, y, type="any")
foverlaps(x, y, type="any", nomatch=NULL)
foverlaps(x, y, type="within", which=TRUE)
foverlaps(x, y, type="within")

https://www.bioconductor.org/packages/release/bioc/html/IRanges.html

frank 49

foverlaps(x, y, type="start")

x and y have different column names - specify by.x
x = data.table(seq=c("Chr1", "Chr1", "Chr2", "Chr2", "Chr2"),

start=c(5,10, 1, 25, 50), end=c(11,20,4,52,60))
y = data.table(chr=c("Chr1", "Chr1", "Chr2"), start=c(1, 15,1),

end=c(4, 18, 55), geneid=letters[1:3])
setkey(y, chr, start, end)
foverlaps(x, y, by.x=c("seq", "start", "end"),

type="any", which=TRUE)

frank Fast rank

Description

Similar to base::rank but much faster. And it accepts vectors, lists, data.frames or data.tables
as input. In addition to the ties.method possibilities provided by base::rank, it also provides
ties.method="dense".

Like forder, sorting is done in "C-locale"; in particular, this may affect how capital/lowercase
letters are ranked. See Details on forder for more.

bit64::integer64 type is also supported.

Usage

frank(x, ..., na.last=TRUE, ties.method=c("average",
"first", "last", "random", "max", "min", "dense"))

frankv(x, cols=seq_along(x), order=1L, na.last=TRUE,
ties.method=c("average", "first", "last", "random",
"max", "min", "dense"))

Arguments

x A vector, or list with all its elements identical in length or data.frame or
data.table.

... Only for lists, data.frames and data.tables. The columns to calculate ranks
based on. Do not quote column names. If ... is missing, all columns are
considered by default. To sort by a column in descending order prefix "-", e.g.,
frank(x, a, -b, c). -b works when b is of type character as well.

cols A character vector of column names (or numbers) of x, for which to obtain
ranks.

order An integer vector with only possible values of 1 and -1, corresponding to as-
cending and descending order. The length of order must be either 1 or equal to
that of cols. If length(order) == 1, it is recycled to length(cols).

50 frank

na.last Control treatment of NAs. If TRUE, missing values in the data are put last; if
FALSE, they are put first; if NA, they are removed; if "keep" they are kept with
rank NA.

ties.method A character string specifying how ties are treated, see Details.

Details

To be consistent with other data.table operations, NAs are considered identical to other NAs (and
NaNs to other NaNs), unlike base::rank. Therefore, for na.last=TRUE and na.last=FALSE, NAs
(and NaNs) are given identical ranks, unlike rank.

frank is not limited to vectors. It accepts data.tables (and lists and data.frames) as well. It
accepts unquoted column names (with names preceded with a - sign for descending order, even
on character vectors), for e.g., frank(DT, a, -b, c, ties.method="first") where a,b,c are
columns in DT. The equivalent in frankv is the order argument.

In addition to the ties.method values possible using base’s rank, it also provides another addi-
tional argument "dense" which returns the ranks without any gaps in the ranking. See examples.

Value

A numeric vector of length equal to NROW(x) (unless na.last = NA, when missing values are re-
moved). The vector is of integer type unless ties.method = "average" when it is of double type
(irrespective of ties).

See Also

data.table, setkey, setorder

Examples

on vectors
x = c(4, 1, 4, NA, 1, NA, 4)
NAs are considered identical (unlike base R)
default is average
frankv(x) # na.last=TRUE
frankv(x, na.last=FALSE)

ties.method = min
frankv(x, ties.method="min")
ties.method = dense
frankv(x, ties.method="dense")

on data.table
DT = data.table(x, y=c(1, 1, 1, 0, NA, 0, 2))
frankv(DT, cols="x") # same as frankv(x) from before
frankv(DT, cols="x", na.last="keep")
frankv(DT, cols="x", ties.method="dense", na.last=NA)
frank(DT, x, ties.method="dense", na.last=NA) # equivalent of above using frank
on both columns
frankv(DT, ties.method="first", na.last="keep")
frank(DT, ties.method="first", na.last="keep") # equivalent of above using frank

fread 51

order argument
frank(DT, x, -y, ties.method="first")
equivalent of above using frankv
frankv(DT, order=c(1L, -1L), ties.method="first")

fread Fast and friendly file finagler

Description

Similar to read.csv() and read.delim() but faster and more convenient. All controls such as
sep, colClasses and nrows are automatically detected.

bit64::integer64, IDate, and POSIXct types are also detected and read directly without needing
to read as character before converting.

fread is for regular delimited files; i.e., where every row has the same number of columns. In
future, secondary separator (sep2) may be specified within each column. Such columns will be
read as type list where each cell is itself a vector.

Usage

fread(input, file, text, cmd, sep="auto", sep2="auto", dec="auto", quote="\"",
nrows=Inf, header="auto",
na.strings=getOption("datatable.na.strings","NA"), # due to change to ""; see NEWS
stringsAsFactors=FALSE, verbose=getOption("datatable.verbose", FALSE),
skip="__auto__", select=NULL, drop=NULL, colClasses=NULL,
integer64=getOption("datatable.integer64", "integer64"),
col.names,
check.names=FALSE, encoding="unknown",
strip.white=TRUE, fill=FALSE, blank.lines.skip=FALSE,
key=NULL, index=NULL,
showProgress=getOption("datatable.showProgress", interactive()),
data.table=getOption("datatable.fread.datatable", TRUE),
nThread=getDTthreads(verbose),
logical01=getOption("datatable.logical01", FALSE), # due to change to TRUE; see NEWS
keepLeadingZeros = getOption("datatable.keepLeadingZeros", FALSE),
yaml=FALSE, autostart=NA, tmpdir=tempdir(), tz="UTC"
)

Arguments

input A single character string. The value is inspected and deferred to either file= (if
no \n present), text= (if at least one \n is present) or cmd= (if no \n is present,
at least one space is present, and it isn’t a file name). Exactly one of input=,
file=, text=, or cmd= should be used in the same call.

52 fread

file File name in working directory, path to file (passed through path.expand for
convenience), or a URL starting http://, file://, etc. Compressed files with exten-
sion ‘.gz’ and ‘.bz2’ are supported if the R.utils package is installed.

text The input data itself as a character vector of one or more lines, for example as
returned by readLines().

cmd A shell command that pre-processes the file; e.g. fread(cmd=paste("grep",word,"filename")).
See Details.

sep The separator between columns. Defaults to the character in the set [,\t |;:]
that separates the sample of rows into the most number of lines with the same
number of fields. Use NULL or "" to specify no separator; i.e. each line a single
character column like base::readLines does.

sep2 The separator within columns. A list column will be returned where each
cell is a vector of values. This is much faster using less working memory than
strsplit afterwards or similar techniques. For each column sep2 can be dif-
ferent and is the first character in the same set above [,\t |;], other than sep,
that exists inside each field outside quoted regions in the sample. NB: sep2 is
not yet implemented.

nrows The maximum number of rows to read. Unlike read.table, you do not need
to set this to an estimate of the number of rows in the file for better speed be-
cause that is already automatically determined by fread almost instantly using
the large sample of lines. nrows=0 returns the column names and typed empty
columns determined by the large sample; useful for a dry run of a large file or to
quickly check format consistency of a set of files before starting to read any of
them.

header Does the first data line contain column names? Defaults according to whether
every non-empty field on the first data line is type character. If so, or TRUE is
supplied, any empty column names are given a default name.

na.strings A character vector of strings which are to be interpreted as NA values. By de-
fault, ",," for columns of all types, including type character is read as NA for
consistency. ,"", is unambiguous and read as an empty string. To read ,NA, as
NA, set na.strings="NA". To read ,, as blank string "", set na.strings=NULL.
When they occur in the file, the strings in na.strings should not appear quoted
since that is how the string literal ,"NA", is distinguished from ,NA,, for exam-
ple, when na.strings="NA".

stringsAsFactors

Convert all or some character columns to factors? Acceptable inputs are TRUE,
FALSE, or a decimal value between 0.0 and 1.0. For stringsAsFactors =
FALSE, all string columns are stored as character vs. all stored as factor
when TRUE. When stringsAsFactors = p for 0 <= p <= 1, string columns col
are stored as factor if uniqueN(col)/nrow < p.

verbose Be chatty and report timings?

skip If 0 (default) start on the first line and from there finds the first row with a consis-
tent number of columns. This automatically avoids irregular header information
before the column names row. skip>0 means ignore the first skip rows man-
ually. skip="string" searches for "string" in the file (e.g. a substring of

fread 53

the column names row) and starts on that line (inspired by read.xls in package
gdata).

select A vector of column names or numbers to keep, drop the rest. select may spec-
ify types too in the same way as colClasses; i.e., a vector of colname=type
pairs, or a list of type=col(s) pairs. In all forms of select, the order that the
columns are specified determines the order of the columns in the result.

drop Vector of column names or numbers to drop, keep the rest.

colClasses As in utils::read.csv; i.e., an unnamed vector of types corresponding to
the columns in the file, or a named vector specifying types for a subset of the
columns by name. The default, NULL means types are inferred from the data
in the file. Further, data.table supports a named list of vectors of column
names or numbers where the list names are the class names; see examples.
The list form makes it easier to set a batch of columns to be a particular class.
When column numbers are used in the list form, they refer to the column
number in the file not the column number after select or drop has been ap-
plied. If type coercion results in an error, introduces NAs, or would result in loss
of accuracy, the coercion attempt is aborted for that column with warning and
the column’s type is left unchanged. If you really desire data loss (e.g. read-
ing 3.14 as integer) you have to truncate such columns afterwards yourself
explicitly so that this is clear to future readers of your code.

integer64 "integer64" (default) reads columns detected as containing integers larger than
2^31 as type bit64::integer64. Alternatively, "double"|"numeric" reads as
utils::read.csv does; i.e., possibly with loss of precision and if so silently.
Or, "character".

dec The decimal separator as in utils::read.csv. When "auto" (the default), an
attempt is made to decide whether "." or "," is more suitable for this input. See
details.

col.names A vector of optional names for the variables (columns). The default is to use
the header column if present or detected, or if not "V" followed by the column
number. This is applied after check.names and before key and index.

check.names default is FALSE. If TRUE then the names of the variables in the data.table are
checked to ensure that they are syntactically valid variable names. If necessary
they are adjusted (by make.names) so that they are, and also to ensure that there
are no duplicates.

encoding default is "unknown". Other possible options are "UTF-8" and "Latin-1".
Note: it is not used to re-encode the input, rather enables handling of encoded
strings in their native encoding.

quote By default ("\""), if a field starts with a double quote, fread handles embedded
quotes robustly as explained under Details. If it fails, then another attempt is
made to read the field as is, i.e., as if quotes are disabled. By setting quote="",
the field is always read as if quotes are disabled. It is not expected to ever need
to pass anything other than \"\" to quote; i.e., to turn it off.

strip.white Logical, default TRUE, in which case leading and trailing whitespace is stripped
from unquoted "character" fields. "numeric" fields are always stripped of
leading and trailing whitespace.

54 fread

fill logical or integer (default is FALSE). If TRUE then in case the rows have unequal
length, number of columns is estimated and blank fields are implicitly filled. If
an integer is provided it is used as an upper bound for the number of columns.
If fill=Inf then the whole file is read for detecting the number of columns.

blank.lines.skip

logical, default is FALSE. If TRUE blank lines in the input are ignored.

key Character vector of one or more column names which is passed to setkey. Only
valid when argument data.table=TRUE. Where applicable, this should refer to
column names given in col.names.

index Character vector or list of character vectors of one or more column names which
is passed to setindexv. As with key, comma-separated notation like index="x,y,z"
is accepted for convenience. Only valid when argument data.table=TRUE.
Where applicable, this should refer to column names given in col.names.

showProgress TRUE displays progress on the console if the ETA is greater than 3 seconds. It is
produced in fread’s C code where the very nice (but R level) txtProgressBar and
tkProgressBar are not easily available.

data.table TRUE returns a data.table. FALSE returns a data.frame. The default for this
argument can be changed with options(datatable.fread.datatable=FALSE).

nThread The number of threads to use. Experiment to see what works best for your data
on your hardware.

logical01 If TRUE a column containing only 0s and 1s will be read as logical, otherwise
as integer.

keepLeadingZeros

If TRUE a column containing numeric data with leading zeros will be read as
character, otherwise leading zeros will be removed and converted to numeric.

yaml If TRUE, fread will attempt to parse (using yaml.load) the top of the input as
YAML, and further to glean parameters relevant to improving the performance
of fread on the data itself. The entire YAML section is returned as parsed into
a list in the yaml_metadata attribute. See Details.

autostart Deprecated and ignored with warning. Please use skip instead.

tmpdir Directory to use as the tmpdir argument for any tempfile calls, e.g. when the
input is a URL or a shell command. The default is tempdir() which can be
controlled by setting TMPDIR before starting the R session; see base::tempdir.

tz Relevant to datetime values which have no Z or UTC-offset at the end, i.e.
unmarked datetime, as written by utils::write.csv. The default tz="UTC"
reads unmarked datetime as UTC POSIXct efficiently. tz="" reads unmarked
datetime as type character (slowly) so that as.POSIXct can interpret (slowly) the
character datetimes in local timezone; e.g. by using "POSIXct" in colClasses=.
Note that fwrite() by default writes datetime in UTC including the final Z and
therefore fwrite’s output will be read by fread consistently and quickly with-
out needing to use tz= or colClasses=. If the TZ environment variable is set
to "UTC" (or "" on non-Windows where unset vs ‘""‘ is significant) then the R
session’s timezone is already UTC and tz="" will result in unmarked datetimes
being read as UTC POSIXct. For more information, please see the news items
from v1.13.0 and v1.14.0.

fread 55

Details

A sample of 10,000 rows is used for a very good estimate of column types. 100 contiguous rows
are read from 100 equally spaced points throughout the file including the beginning, middle and the
very end. This results in a better guess when a column changes type later in the file (e.g. blank
at the beginning/only populated near the end, or 001 at the start but 0A0 later on). This very good
type guess enables a single allocation of the correct type up front once for speed, memory efficiency
and convenience of avoiding the need to set colClasses after an error. Even though the sample is
large and jumping over the file, it is almost instant regardless of the size of the file because a lazy
on-demand memory map is used. If a jump lands inside a quoted field containing newlines, each
newline is tested until 5 lines are found following it with the expected number of fields. The lowest
type for each column is chosen from the ordered list: logical, integer, integer64, double,
character. Rarely, the file may contain data of a higher type in rows outside the sample (referred
to as an out-of-sample type exception). In this event fread will automatically reread just those
columns from the beginning so that you don’t have the inconvenience of having to set colClasses
yourself; particularly helpful if you have a lot of columns. Such columns must be read from the
beginning to correctly distinguish "00" from "000" when those have both been interpreted as integer
0 due to the sample but 00A occurs out of sample. Set verbose=TRUE to see a detailed report of the
logic deployed to read your file.

There is no line length limit, not even a very large one. Since we are encouraging list columns (i.e.
sep2) this has the potential to encourage longer line lengths. So the approach of scanning each line
into a buffer first and then rescanning that buffer is not used. There are no buffers used in fread’s
C code at all. The field width limit is limited by R itself: the maximum width of a character string
(currently 2^31-1 bytes, 2GB).

The filename extension (such as .csv) is irrelevant for "auto" sep and sep2. Separator detection is
entirely driven by the file contents. This can be useful when loading a set of different files which
may not be named consistently, or may not have the extension .csv despite being csv. Some datasets
have been collected over many years, one file per day for example. Sometimes the file name format
has changed at some point in the past or even the format of the file itself. So the idea is that you can
loop fread through a set of files and as long as each file is regular and delimited, fread can read
them all. Whether they all stack is another matter but at least each one is read quickly without you
needing to vary colClasses in read.table or read.csv.

If an empty line is encountered then reading stops there with warning if any text exists after the
empty line such as a footer. The first line of any text discarded is included in the warning message.
Unless, it is single-column input. In that case blank lines are significant (even at the very end) and
represent NA in the single column. So that fread(fwrite(DT))==DT. This default behaviour can
be controlled using blank.lines.skip=TRUE|FALSE.

Line endings: All known line endings are detected automatically: \n (*NIX including Mac), \r\n
(Windows CRLF), \r (old Mac) and \n\r (just in case). There is no need to convert input files first.
fread running on any architecture will read a file from any architecture. Both \r and \n may be
embedded in character strings (including column names) provided the field is quoted.

Decimal separator: dec is used to parse numeric fields as the separator between integral and
fractional parts. When dec='auto', during column type detection, when a field is a candidate for
being numeric (i.e., parsing as lower types has already failed), dec='.' is tried, and, if it fails to
create a numeric field, dec=',' is tried. At the end of the sample lines, if more were successfully
parsed with dec=',', dec is set to ','; otherwise, dec is set to '.'.

Automatic detection of sep occurs prior to column type detection – as such, it is possible that sep

56 fread

has been inferred to be ',', in which case dec is set to '.'.

Quotes:

When quote is a single character,

• Spaces and other whitespace (other than sep and \n) may appear in unquoted character fields,
e.g., ...,2,Joe Bloggs,3.14,....

• When character columns are quoted, they must start and end with that quoting character
immediately followed by sep or \n, e.g., ...,2,"Joe Bloggs",3.14,....
In essence quoting character fields are required only if sep or \n appears in the string value.
Quoting may be used to signify that numeric data should be read as text. Unescaped quotes
may be present in a quoted field, e.g., ...,2,"Joe, "Bloggs"",3.14,..., as well as escaped
quotes, e.g., ...,2,"Joe \",Bloggs\"",3.14,....
If an embedded quote is followed by the separator inside a quoted field, the embedded quotes
up to that point in that field must be balanced; e.g. ...,2,"www.blah?x="one",y="two"",3.14,....
On those fields that do not satisfy these conditions, e.g., fields with unbalanced quotes, fread
re-attempts that field as if it isn’t quoted. This is quite useful in reading files that contains
fields with unbalanced quotes as well, automatically.

To read fields as is instead, use quote = "".

CSVY Support:

Currently, the yaml setting is somewhat inflexible with respect to incorporating metadata to facilitate
file reading. Information on column classes should be stored at the top level under the heading
schema and subheading fields; those with both a type and a name sub-heading will be merged
into colClasses. Other supported elements are as follows:

• sep (or alias delimiter)

• header

• quote (or aliases quoteChar, quote_char)

• dec (or alias decimal)

• na.strings

File Download:

When input begins with http://, https://, ftp://, ftps://, or file://, fread detects this and downloads
the target to a temporary file (at tempfile()) before proceeding to read the file as usual. URLS
(ftps:// and https:// as well as ftp:// and http://) paths are downloaded with download.file and
method set to getOption("download.file.method"), defaulting to "auto"; and file:// is down-
loaded with download.file with method="internal". NB: this implies that for file://, even files
found on the current machine will be "downloaded" (i.e., hard-copied) to a temporary file. See
download.file for more details.

Shell commands:

fread accepts shell commands for convenience. The input command is run and its output written
to a file in tmpdir (tempdir() by default) to which fread is applied "as normal". The details are
platform dependent – system is used on UNIX environments, shell otherwise; see system.

fread 57

Value

A data.table by default, otherwise a data.frame when argument data.table=FALSE.

References

Background :
https://cran.r-project.org/doc/manuals/R-data.html
https://stackoverflow.com/questions/1727772/quickly-reading-very-large-tables-as-dataframes-in-r
https://stackoverflow.com/questions/9061736/faster-than-scan-with-rcpp
https://stackoverflow.com/questions/415515/how-can-i-read-and-manipulate-csv-file-data-in-c
https://stackoverflow.com/questions/9352887/strategies-for-reading-in-csv-files-in-pieces
https://stackoverflow.com/questions/11782084/reading-in-large-text-files-in-r
https://stackoverflow.com/questions/45972/mmap-vs-reading-blocks
https://stackoverflow.com/questions/258091/when-should-i-use-mmap-for-file-access
https://stackoverflow.com/a/9818473/403310
https://stackoverflow.com/questions/9608950/reading-huge-files-using-memory-mapped-files

finagler = "to get or achieve by guile or manipulation" https://dictionary.reference.com/
browse/finagler

On YAML, see https://yaml.org/.

See Also

read.csv, url, Sys.setlocale, setDTthreads, fwrite, bit64::integer64

Examples

Reads text input directly :
fread("A,B\n1,2\n3,4")

Reads pasted input directly :
fread("A,B
1,2
3,4
")

Finds the first data line automatically :
fread("
This is perhaps a banner line or two or ten.
A,B
1,2
3,4
")

Detects whether column names are present automatically :
fread("
1,2
3,4
")

Numerical precision :

https://cran.r-project.org/doc/manuals/R-data.html
https://stackoverflow.com/questions/1727772/quickly-reading-very-large-tables-as-dataframes-in-r
https://stackoverflow.com/questions/9061736/faster-than-scan-with-rcpp
https://stackoverflow.com/questions/415515/how-can-i-read-and-manipulate-csv-file-data-in-c
https://stackoverflow.com/questions/9352887/strategies-for-reading-in-csv-files-in-pieces
https://stackoverflow.com/questions/11782084/reading-in-large-text-files-in-r
https://stackoverflow.com/questions/45972/mmap-vs-reading-blocks
https://stackoverflow.com/questions/258091/when-should-i-use-mmap-for-file-access
https://stackoverflow.com/a/9818473/403310
https://stackoverflow.com/questions/9608950/reading-huge-files-using-memory-mapped-files
https://dictionary.reference.com/browse/finagler
https://dictionary.reference.com/browse/finagler
https://yaml.org/
https://CRAN.R-project.org/package=bit64

58 fread

DT = fread("A\n1.010203040506070809010203040506\n")
TODO: add numerals=c("allow.loss", "warn.loss", "no.loss") from base::read.table, +"use.Rmpfr"
typeof(DT$A)=="double" # currently "allow.loss" with no option

DT = fread("A\n1.46761e-313\n") # read as 'numeric'
DT[,sprintf("%.15E",A)] # beyond what double precision can store accurately to 15 digits
For greater accuracy use colClasses to read as character, then package Rmpfr.

colClasses
data = "A,B,C,D\n1,3,5,7\n2,4,6,8\n"
fread(data, colClasses=c(B="character",C="character",D="character")) # as read.csv
fread(data, colClasses=list(character=c("B","C","D"))) # saves typing
fread(data, colClasses=list(character=2:4)) # same using column numbers

drop
fread(data, colClasses=c("B"="NULL","C"="NULL")) # as read.csv
fread(data, colClasses=list(NULL=c("B","C"))) #
fread(data, drop=c("B","C")) # same but less typing, easier to read
fread(data, drop=2:3) # same using column numbers

select
(in read.csv you need to work out which to drop)
fread(data, select=c("A","D")) # less typing, easier to read
fread(data, select=c(1,4)) # same using column numbers

select and types combined
fread(data, select=c(A="numeric", D="character"))
fread(data, select=list(numeric="A", character="D"))

skip blank lines
fread("a,b\n1,a\n2,b\n\n\n3,c\n", blank.lines.skip=TRUE)
fill
fread("a,b\n1,a\n2\n3,c\n", fill=TRUE)
fread("a,b\n\n1,a\n2\n\n3,c\n\n", fill=TRUE)

fill with skip blank lines
fread("a,b\n\n1,a\n2\n\n3,c\n\n", fill=TRUE, blank.lines.skip=TRUE)

check.names usage
fread("a b,a b\n1,2\n")
fread("a b,a b\n1,2\n", check.names=TRUE) # no duplicates + syntactically valid names

Not run:
Demo speed-up
n = 1e6
DT = data.table(a=sample(1:1000,n,replace=TRUE),

b=sample(1:1000,n,replace=TRUE),
c=rnorm(n),
d=sample(c("foo","bar","baz","qux","quux"),n,replace=TRUE),
e=rnorm(n),
f=sample(1:1000,n,replace=TRUE))

DT[2,b:=NA_integer_]

fread 59

DT[4,c:=NA_real_]
DT[3,d:=NA_character_]
DT[5,d:=""]
DT[2,e:=+Inf]
DT[3,e:=-Inf]

write.table(DT,"test.csv",sep=",",row.names=FALSE,quote=FALSE)
cat("File size (MB):", round(file.info("test.csv")$size/1024^2),"\n")
50 MB (1e6 rows x 6 columns)

system.time(DF1 <-read.csv("test.csv",stringsAsFactors=FALSE))
5.4 sec (first time in fresh R session)

system.time(DF1 <- read.csv("test.csv",stringsAsFactors=FALSE))
3.9 sec (immediate repeat is faster, varies)

system.time(DF2 <- read.table("test.csv",header=TRUE,sep=",",quote="",
stringsAsFactors=FALSE,comment.char="",nrows=n,
colClasses=c("integer","integer","numeric",

"character","numeric","integer")))
1.2 sec (consistently). All known tricks and known nrows, see references.

system.time(DT <- fread("test.csv"))
0.1 sec (faster and friendlier)

identical(DF1, DF2)
all.equal(as.data.table(DF1), DT)

Scaling up ...
l = vector("list",10)
for (i in 1:10) l[[i]] = DT
DTbig = rbindlist(l)
tables()
write.table(DTbig,"testbig.csv",sep=",",row.names=FALSE,quote=FALSE)
500MB csv (10 million rows x 6 columns)

system.time(DF <- read.table("testbig.csv",header=TRUE,sep=",",
quote="",stringsAsFactors=FALSE,comment.char="",nrows=1e7,
colClasses=c("integer","integer","numeric",

"character","numeric","integer")))
17.0 sec (varies)

system.time(DT <- fread("testbig.csv"))
0.8 sec

all(mapply(all.equal, DF, DT))

Reads URLs directly :
fread("https://www.stats.ox.ac.uk/pub/datasets/csb/ch11b.dat")

Decompresses .gz and .bz2 automatically :
fread("https://github.com/Rdatatable/data.table/raw/1.14.0/inst/tests/ch11b.dat.bz2")

60 fsort

fread("https://github.com/Rdatatable/data.table/raw/1.14.0/inst/tests/issue_785_fread.txt.gz")

End(Not run)

fsort Fast parallel sort

Description

Similar to base::sort but fast using parallelism. Experimental.

Usage

fsort(x, decreasing = FALSE, na.last = FALSE, internal=FALSE, verbose=FALSE, ...)

Arguments

x A vector. Type double, currently.

decreasing Decreasing order?

na.last Control treatment of NAs. If TRUE, missing values in the data are put last; if
FALSE, they are put first; if NA, they are removed; if "keep" they are kept with
rank NA.

internal Internal use only. Temporary variable. Will be removed.

verbose Print tracing information.

... Not sure yet. Should be consistent with base R.

Details

Process will raise error if x contains negative values. Unless x is already sorted fsort will redirect
processing to slower single threaded order followed by subset in following cases:

• data type other than double (numeric)

• data having NAs

• decreasing==FALSE

Value

The input in sorted order.

Examples

x = runif(1e6)
system.time(ans1 <- sort(x, method="quick"))
system.time(ans2 <- fsort(x))
identical(ans1, ans2)

fwrite 61

fwrite Fast CSV writer

Description

As write.csv but much faster (e.g. 2 seconds versus 1 minute) and just as flexible. Modern
machines almost surely have more than one CPU so fwrite uses them; on all operating systems
including Linux, Mac and Windows.

Usage

fwrite(x, file = "", append = FALSE, quote = "auto",
sep=getOption("datatable.fwrite.sep", ","),
sep2 = c("","|",""),
eol = if (.Platform$OS.type=="windows") "\r\n" else "\n",
na = "", dec = ".", row.names = FALSE, col.names = TRUE,
qmethod = c("double","escape"),
logical01 = getOption("datatable.logical01", FALSE), # due to change to TRUE; see NEWS
logicalAsInt = logical01, # deprecated
scipen = getOption('scipen', 0L),
dateTimeAs = c("ISO","squash","epoch","write.csv"),
buffMB = 8L, nThread = getDTthreads(verbose),
showProgress = getOption("datatable.showProgress", interactive()),
compress = c("auto", "none", "gzip"),
yaml = FALSE,
bom = FALSE,
verbose = getOption("datatable.verbose", FALSE),
encoding = "")

Arguments

x Any list of same length vectors; e.g. data.frame and data.table. If matrix,
it gets internally coerced to data.table preserving col names but not row names

file Output file name. "" indicates output to the console.

append If TRUE, the file is opened in append mode and column names (header row) are
not written.

quote When "auto", character fields, factor fields and column names will only be sur-
rounded by double quotes when they need to be; i.e., when the field contains the
separator sep, a line ending \n, the double quote itself or (when list columns
are present) sep2[2] (see sep2 below). If FALSE the fields are not wrapped
with quotes even if this would break the CSV due to the contents of the field.
If TRUE double quotes are always included other than around numeric fields, as
write.csv.

sep The separator between columns. Default is ",".

62 fwrite

sep2 For columns of type list where each item is an atomic vector, sep2 controls
how to separate items within the column. sep2[1] is written at the start of
the output field, sep2[2] is placed between each item and sep2[3] is written
at the end. sep2[1] and sep2[3] may be any length strings including empty
"" (default). sep2[2] must be a single character and (when list columns are
present and therefore sep2 is used) different from both sep and dec. The default
(|) is chosen to visually distinguish from the default sep. In speaking, writing
and in code comments we may refer to sep2[2] as simply "sep2".

eol Line separator. Default is "\r\n" for Windows and "\n" otherwise.

na The string to use for missing values in the data. Default is a blank string "".

dec The decimal separator, by default ".". See link in references. Cannot be the
same as sep.

row.names Should row names be written? For compatibility with data.frame and write.csv
since data.table never has row names. Hence default FALSE unlike write.csv.

col.names Should the column names (header row) be written? The default is TRUE for new
files and when overwriting existing files (append=FALSE). Otherwise, the default
is FALSE to prevent column names appearing again mid-file when stacking a set
of data.tables or appending rows to the end of a file.

qmethod A character string specifying how to deal with embedded double quote charac-
ters when quoting strings.

• "escape" - the quote character (as well as the backslash character) is escaped
in C style by a backslash, or

• "double" (default, same as write.csv), in which case the double quote is
doubled with another one.

logical01 Should logical values be written as 1 and 0 rather than "TRUE" and "FALSE"?

logicalAsInt Deprecated. Old name for ‘logical01‘. Name change for consistency with
‘fread‘ for which ‘logicalAsInt‘ would not make sense.

scipen integer In terms of printing width, how much of a bias should there be towards
printing whole numbers rather than scientific notation? See Details.

dateTimeAs How Date/IDate, ITime and POSIXct items are written.

• "ISO" (default) - 2016-09-12, 18:12:16 and 2016-09-12T18:12:16.999999Z.
0, 3 or 6 digits of fractional seconds are printed if and when present for con-
venience, regardless of any R options such as digits.secs. The idea be-
ing that if milli and microseconds are present then you most likely want to
retain them. R’s internal UTC representation is written faithfully to encour-
age ISO standards, stymie timezone ambiguity and for speed. An option
to consider is to start R in the UTC timezone simply with "$ TZ='UTC' R"
at the shell (NB: it must be one or more spaces between TZ='UTC' and R,
anything else will be silently ignored; this TZ setting applies just to that R
process) or Sys.setenv(TZ='UTC') at the R prompt and then continue as
if UTC were local time.

• "squash" - 20160912, 181216 and 20160912181216999. This option allows
fast and simple extraction of yyyy, mm, dd and (most commonly to group
by) yyyymm parts using integer div and mod operations. In R for example,
one line helper functions could use %/%10000, %/%100%%100, %%100 and

fwrite 63

%/%100 respectively. POSIXct UTC is squashed to 17 digits (including 3
digits of milliseconds always, even if 000) which may be read comfortably
as integer64 (automatically by fread()).

• "epoch" - 17056, 65536 and 1473703936.999999. The underlying num-
ber of days or seconds since the relevant epoch (1970-01-01, 00:00:00 and
1970-01-01T00:00:00Z respectively), negative before that (see ?Date). 0,
3 or 6 digits of fractional seconds are printed if and when present.

• "write.csv" - this currently affects POSIXct only. It is written as write.csv
does by using the as.character method which heeds digits.secs and
converts from R’s internal UTC representation back to local time (or the
"tzone" attribute) as of that historical date. Accordingly this can be slow.
All other column types (including Date, IDate and ITime which are in-
dependent of timezone) are written as the "ISO" option using fast C code
which is already consistent with write.csv.

The first three options are fast due to new specialized C code. The epoch to
date-part conversion uses a fast approach by Howard Hinnant (see references)
using a day-of-year starting on 1 March. You should not be able to notice any
difference in write speed between those three options. The date range supported
for Date and IDate is [0000-03-01, 9999-12-31]. Every one of these 3,652,365
dates have been tested and compared to base R including all 2,790 leap days in
this range.

This option applies to vectors of date/time in list column cells, too.

A fully flexible format string (such as "%m/%d/%Y") is not supported. This is
to encourage use of ISO standards and because that flexibility is not known how
to make fast at C level. We may be able to support one or two more specific
options if required.

buffMB The buffer size (MB) per thread in the range 1 to 1024, default 8MB. Experiment
to see what works best for your data on your hardware.

nThread The number of threads to use. Experiment to see what works best for your data
on your hardware.

showProgress Display a progress meter on the console? Ignored when file=="".

compress If compress = "auto" and if file ends in .gz then output format is gzipped
csv else csv. If compress = "none", output format is always csv. If compress =
"gzip" then format is gzipped csv. Output to the console is never gzipped even
if compress = "gzip". By default, compress = "auto".

yaml If TRUE, fwrite will output a CSVY file, that is, a CSV file with metadata stored
as a YAML header, using as.yaml. See Details.

bom If TRUE a BOM (Byte Order Mark) sequence (EF BB BF) is added at the begin-
ning of the file; format ’UTF-8 with BOM’.

verbose Be chatty and report timings?

encoding The encoding of the strings written to the CSV file. Default is "", which means
writing raw bytes without considering the encoding. Other possible options are
"UTF-8" and "native".

64 fwrite

Details

fwrite began as a community contribution with pull request #1613 by Otto Seiskari. This gave Matt
Dowle the impetus to specialize the numeric formatting and to parallelize: https://h2o.ai/blog/
2016/fast-csv-writing-for-r/. Final items were tracked in issue #1664 such as automatic
quoting, bit64::integer64 support, decimal/scientific formatting exactly matching write.csv
between 2.225074e-308 and 1.797693e+308 to 15 significant figures, row.names, dates (between
0000-03-01 and 9999-12-31), times and sep2 for list columns where each cell can itself be a
vector.

To save space, fwrite prefers to write wide numeric values in scientific notation – e.g. 10000000000
takes up much more space than 1e+10. Most file readers (e.g. fread) understand scientific nota-
tion, so there’s no fidelity loss. Like in base R, users can control this by specifying the scipen
argument, which follows the same rules as options('scipen'). fwrite will see how much space
a value will take to write in scientific vs. decimal notation, and will only write in scientific notation
if the latter is more than scipen characters wider. For 10000000000, then, 1e+10 will be written
whenever scipen<6.

CSVY Support:

The following fields will be written to the header of the file and surrounded by --- on top and
bottom:

• source - Contains the R version and data.table version used to write the file

• creation_time_utc - Current timestamp in UTC time just before the header is written

• schema with element fields giving name-type (class) pairs for the table; multi-class objects
(e.g. c('POSIXct', 'POSIXt')) will have their first class written.

• header - same as col.names (which is header on input)

• sep

• sep2

• eol

• na.strings - same as na

• dec

• qmethod

• logical01

References

https://howardhinnant.github.io/date_algorithms.html
https://en.wikipedia.org/wiki/Decimal_mark

See Also

setDTthreads, fread, write.csv, write.table, bit64::integer64

https://github.com/Rdatatable/data.table/pull/1613
https://h2o.ai/blog/2016/fast-csv-writing-for-r/
https://h2o.ai/blog/2016/fast-csv-writing-for-r/
https://github.com/Rdatatable/data.table/issues/1664
https://howardhinnant.github.io/date_algorithms.html
https://en.wikipedia.org/wiki/Decimal_mark
https://CRAN.R-project.org/package=bit64

fwrite 65

Examples

DF = data.frame(A=1:3, B=c("foo","A,Name","baz"))
fwrite(DF)
write.csv(DF, row.names=FALSE, quote=FALSE) # same

fwrite(DF, row.names=TRUE, quote=TRUE)
write.csv(DF) # same

DF = data.frame(A=c(2.1,-1.234e-307,pi), B=c("foo","A,Name","bar"))
fwrite(DF, quote='auto') # Just DF[2,2] is auto quoted
write.csv(DF, row.names=FALSE) # same numeric formatting

DT = data.table(A=c(2,5.6,-3),B=list(1:3,c("foo","A,Name","bar"),round(pi*1:3,2)))
fwrite(DT)
fwrite(DT, sep="|", sep2=c("{",",","}"))

Not run:

set.seed(1)
DT = as.data.table(lapply(1:10, sample,

x=as.numeric(1:5e7), size=5e6)) # 382MB
system.time(fwrite(DT, "/dev/shm/tmp1.csv")) # 0.8s
system.time(write.csv(DT, "/dev/shm/tmp2.csv", # 60.6s

quote=FALSE, row.names=FALSE))
system("diff /dev/shm/tmp1.csv /dev/shm/tmp2.csv") # identical

set.seed(1)
N = 1e7
DT = data.table(

str1=sample(sprintf("%010d",sample(N,1e5,replace=TRUE)), N, replace=TRUE),
str2=sample(sprintf("%09d",sample(N,1e5,replace=TRUE)), N, replace=TRUE),
str3=sample(sapply(sample(2:30, 100, TRUE), function(n)

paste0(sample(LETTERS, n, TRUE), collapse="")), N, TRUE),
str4=sprintf("%05d",sample(sample(1e5,50),N,TRUE)),
num1=sample(round(rnorm(1e6,mean=6.5,sd=15),2), N, replace=TRUE),
num2=sample(round(rnorm(1e6,mean=6.5,sd=15),10), N, replace=TRUE),
str5=sample(c("Y","N"),N,TRUE),
str6=sample(c("M","F"),N,TRUE),
int1=sample(ceiling(rexp(1e6)), N, replace=TRUE),
int2=sample(N,N,replace=TRUE)-N/2

) # 774MB
system.time(fwrite(DT,"/dev/shm/tmp1.csv")) # 1.1s
system.time(write.csv(DT,"/dev/shm/tmp2.csv", # 63.2s

row.names=FALSE, quote=FALSE))
system("diff /dev/shm/tmp1.csv /dev/shm/tmp2.csv") # identical

unlink("/dev/shm/tmp1.csv")
unlink("/dev/shm/tmp2.csv")

End(Not run)

66 groupingsets

groupingsets Grouping Set aggregation for data tables

Description

Calculate aggregates at various levels of groupings producing multiple (sub-)totals. Reflects SQLs
GROUPING SETS operations.

Usage

rollup(x, ...)
S3 method for class 'data.table'
rollup(x, j, by, .SDcols, id = FALSE, label = NULL, ...)
cube(x, ...)
S3 method for class 'data.table'
cube(x, j, by, .SDcols, id = FALSE, label = NULL, ...)
groupingsets(x, ...)
S3 method for class 'data.table'
groupingsets(x, j, by, sets, .SDcols, id = FALSE, jj, label = NULL, ...)

Arguments

x data.table.

... argument passed to custom user methods. Ignored for data.table methods.

j expression passed to data.table j.

by character column names by which we are grouping.

sets list of character vector reflecting grouping sets, used in groupingsets for flex-
ibility.

.SDcols columns to be used in j expression in .SD object.

id logical default FALSE. If TRUE it will add leading column with bit mask of group-
ing sets.

jj quoted version of j argument, for convenience. When provided function will
ignore j argument.

label label(s) to be used in the ’total’ rows in the grouping variable columns of the
output, that is, in rows where the grouping variable has been aggregated. Can
be a named list of scalars, or a scalar, or NULL. Defaults to NULL, which results
in the grouping variables having NA in their ’total’ rows. See Details.

Details

All three functions rollup, cube, groupingsets are generic methods, data.table methods are
provided.

The label argument can be a named list of scalars, or a scalar, or NULL. When label is a list,
each element name must be (1) a variable name in by, or (2) the first element of the class in the

groupingsets 67

data.table x of a variable in by, or (3) one of ’character’, ’integer’, ’numeric’, ’factor’, ’Date’,
’IDate’. The order of the list elements is not important. A label specified by variable name will
apply only to that variable, while a label specified by first element of a class will apply to all
variables in by for which the first element of the class of the variable in x matches the label
element name, except for variables that have a label specified by variable name (that is, spec-
ification by variable name takes precedence over specification by class). For label elements
with name in by, the class of the label value must be the same as the class of the variable in x.
For label elements with name not in by, the first element of the class of the label value must
be the same as the label element name. For example, label = list(integer = 999, IDate =
as.Date("3000-01-01")) would produce an error because class(999)[1] is not "integer" and
class(as.Date("3000-01-01"))[1] is not "IDate". A corrected specification would be label =
list(integer = 999L, IDate = as.IDate("3000-01-01")).

The label = <scalar> option provides a shorter alternative in the case where only one class of
grouping variable requires a label. For example, label = list(character = "Total") can be
shortened to label = "Total". When this option is used, the label will be applied to all variables in
by for which the first element of the class of the variable in x matches the first element of the class
of the scalar.

Value

A data.table with various aggregates.

References

https://www.postgresql.org/docs/9.5/static/queries-table-expressions.html#QUERIES-GROUPING-SETS
https://www.postgresql.org/docs/9.5/static/functions-aggregate.html#FUNCTIONS-GROUPING-TABLE

See Also

data.table, rbindlist

Examples

n = 24L
set.seed(25)
DT <- data.table(

color = sample(c("green","yellow","red"), n, TRUE),
year = as.Date(sample(paste0(2011:2015,"-01-01"), n, TRUE)),
status = as.factor(sample(c("removed","active","inactive","archived"), n, TRUE)),
amount = sample(1:5, n, TRUE),
value = sample(c(3, 3.5, 2.5, 2), n, TRUE)

)

rollup
by_vars = c("color", "year", "status")
rollup(DT, j=sum(value), by=by_vars) # default id=FALSE
rollup(DT, j=sum(value), by=by_vars, id=TRUE)
rollup(DT, j=lapply(.SD, sum), by=by_vars, id=TRUE, .SDcols="value")
rollup(DT, j=c(list(count=.N), lapply(.SD, sum)), by=by_vars, id=TRUE)
rollup(DT, j=sum(value), by=by_vars,

specify label by variable name

https://www.postgresql.org/docs/9.5/static/queries-table-expressions.html#QUERIES-GROUPING-SETS
https://www.postgresql.org/docs/9.5/static/functions-aggregate.html#FUNCTIONS-GROUPING-TABLE

68 IDateTime

label=list(color="total", year=as.Date("3000-01-01"), status=factor("total")))
rollup(DT, j=sum(value), by=by_vars,

specify label by variable name and first element of class
label=list(color="total", Date=as.Date("3000-01-01"), factor=factor("total")))

label is character scalar so applies to color only
rollup(DT, j=sum(value), by=by_vars, label="total")
rollup(DT, j=.N, by=c("color", "year", "status", "value"),

label can be explicitly specified as NA or NaN
label = list(color=NA_character_, year=as.Date(NA), status=factor(NA), value=NaN))

cube
cube(DT, j = sum(value), by = c("color","year","status"), id=TRUE)
cube(DT, j = lapply(.SD, sum), by = c("color","year","status"), id=TRUE, .SDcols="value")
cube(DT, j = c(list(count=.N), lapply(.SD, sum)), by = c("color","year","status"), id=TRUE)

groupingsets
groupingsets(DT, j = c(list(count=.N), lapply(.SD, sum)), by = c("color","year","status"),

sets = list("color", c("year","status"), character()), id=TRUE)

IDateTime Integer based date class

Description

Classes (IDate and ITime) with integer storage for fast sorting and grouping.

IDate inherits from the base class Date; the main difference is that the latter uses double storage,
allowing e.g. for fractional dates at the cost of storage & sorting inefficiency.

Using IDate, if sub-day granularity is needed, use a second ITime column. IDateTime() facilitates
building such paired columns.

Lastly, there are date-time helpers for extracting parts of dates as integers, for example the year
(year()), month (month()), or day in the month (mday()); see Usage and Examples.

Usage

as.IDate(x, ...)
Default S3 method:
as.IDate(x, ..., tz = attr(x, "tzone", exact=TRUE))
S3 method for class 'Date'
as.IDate(x, ...)
S3 method for class 'IDate'
as.Date(x, ...)
S3 method for class 'IDate'
as.POSIXct(x, tz = "UTC", time = 0, ...)
S3 method for class 'IDate'
round(x, digits = c("weeks", "months", "quarters","years"), ...)

as.ITime(x, ...)

IDateTime 69

Default S3 method:
as.ITime(x, ...)
S3 method for class 'POSIXlt'
as.ITime(x, ms = 'truncate', ...)
S3 method for class 'ITime'
round(x, digits = c("hours", "minutes"), ...)
S3 method for class 'ITime'
trunc(x, units = c("hours", "minutes"), ...)

S3 method for class 'ITime'
as.POSIXct(x, tz = "UTC", date = Sys.Date(), ...)
S3 method for class 'ITime'
as.character(x, ...)
S3 method for class 'ITime'
format(x, ...)

IDateTime(x, ...)
Default S3 method:
IDateTime(x, ...)

second(x)
minute(x)
hour(x)
yday(x)
wday(x)
mday(x)
week(x)
isoweek(x)
month(x)
quarter(x)
year(x)
yearmon(x)
yearqtr(x)

Arguments

x an object

... arguments to be passed to or from other methods. For as.IDate.default, ar-
guments are passed to as.Date. For as.ITime.default, arguments are passed
to as.POSIXlt.

tz time zone (see strptime).

date date object convertible with as.IDate.

time time-of-day object convertible with as.ITime.

digits really units; one of the units listed for rounding. May be abbreviated. Named
digits for consistency with the S3 generic.

units one of the units listed for truncating. May be abbreviated.

70 IDateTime

ms For as.ITime methods, what should be done with sub-second fractions of input?
Valid values are 'truncate' (floor), 'nearest' (round), and 'ceil' (ceiling).
See Details.

Details

IDate is a date class derived from Date. It has the same internal representation as the Date class, ex-
cept the storage mode is integer. IDate is a relatively simple wrapper, and it should work in almost
all situations as a replacement for Date. The main limitations of integer storage are (1) fractional
dates are not supported (use IDateTime() instead) and (2) the range of supported dates is bounded
by .Machine$integer.max dates away from January 1, 1970 (a rather impractical limitation as
these dates are roughly 6 million years in the future/past, but consider this your caveat).

Functions that use Date objects generally work for IDate objects. This package provides specific
methods for IDate objects for mean, cut, seq, c, rep, and split to return an IDate object.

ITime is a time-of-day class stored as the integer number of seconds in the day. as.ITime does not
allow days longer than 24 hours. Because ITime is stored in seconds, you can add it to a POSIXct
object, but you should not add it to a Date object.

We also provide S3 methods to convert to and from Date and POSIXct.

ITime is time zone-agnostic. When converting ITime and IDate to POSIXct with as.POSIXct, a
time zone may be specified.

Inputs like '2018-05-15 12:34:56.789' are ambiguous from the perspective of an ITime object –
the method of coercion of the 789 milliseconds is controlled by the ms argument to relevant methods.
The default behavior (ms = 'truncate') is to use as.integer, which has the effect of truncating
anything after the decimal. Alternatives are to round to the nearest integer (ms = 'nearest') or to
round up (ms = 'ceil').

In as.POSIXct methods for ITime and IDate, the second argument is required to be tz based
on the generic template, but to make converting easier, the second argument is interpreted as a date
instead of a time zone if it is of type IDate or ITime. Therefore, you can use either of the following:
as.POSIXct(time, date) or as.POSIXct(date,time).

IDateTime takes a date-time input and returns a data table with columns date and time.

Using integer storage allows dates and/or times to be used as data table keys. With positive integers
with a range less than 100,000, grouping and sorting is fast because radix sorting can be used (see
sort.list).

Several convenience functions like hour and quarter are provided to group or extract by hour,
month, and other date-time intervals. as.POSIXlt is also useful. For example, as.POSIXlt(x)$mon
is the integer month. The R base convenience functions weekdays, months, and quarters can
also be used, but these return character values, so they must be converted to factors for use with
data.table. isoweek is ISO 8601-consistent.

The round method for IDate’s is useful for grouping and plotting. It can round to weeks, months,
quarters, and years. Similarly, the round and trunc methods for ITime’s are useful for grouping
and plotting. They can round or truncate to hours and minutes. Note for ITime’s with 30 seconds,
rounding is inconsistent due to rounding off a 5. See ’Details’ in round for more information.

Functions like week() and isoweek() provide week numbering functionality. week() computes
completed or fractional weeks within the year, while isoweek() calculates week numbers according
to ISO 8601 standards, which specify that the first week of the year is the one containing the first

IDateTime 71

Thursday. This convention ensures that week boundaries align consistently with year boundaries,
accounting for both year transitions and varying day counts per week.

Value

For as.IDate, a class of IDate and Date with the date stored as the number of days since some
origin.

For as.ITime, a class of ITime stored as the number of seconds in the day.

For IDateTime, a data table with columns idate and itime in IDate and ITime format.

second, minute, hour, yday, wday, mday, week, month, quarter, and year return integer values
for second, minute, hour, day of year, day of week, day of month, week, month, quarter, and year,
respectively. yearmon and yearqtr return double values representing respectively ‘year + (month-
1) / 12‘ and ‘year + (quarter-1) / 4‘.

second, minute, hour are taken directly from the POSIXlt representation. All other values are com-
puted from the underlying integer representation and comparable with the values of their POSIXlt
representation of x, with the notable difference that while yday, wday, and mon are all 0-based, here
they are 1-based.

Author(s)

Tom Short, t.short@ieee.org

References

G. Grothendieck and T. Petzoldt, “Date and Time Classes in R,” R News, vol. 4, no. 1, June 2004.

H. Wickham, https://gist.github.com/hadley/10238.

ISO 8601, https://www.iso.org/iso/home/standards/iso8601.htm

See Also

as.Date, as.POSIXct, strptime, DateTimeClasses

Examples

create IDate:
(d <- as.IDate("2001-01-01"))

S4 coercion also works
identical(as.IDate("2001-01-01"), methods::as("2001-01-01", "IDate"))

create ITime:
(t <- as.ITime("10:45"))

S4 coercion also works
identical(as.ITime("10:45"), methods::as("10:45", "ITime"))

(t <- as.ITime("10:45:04"))

(t <- as.ITime("10:45:04", format = "%H:%M:%S"))

72 J

as.POSIXct("2001-01-01") + as.ITime("10:45")

datetime <- seq(as.POSIXct("2001-01-01"), as.POSIXct("2001-01-03"), by = "5 hour")
(af <- data.table(IDateTime(datetime), a = rep(1:2, 5), key = c("a", "idate", "itime")))

af[, mean(a), by = "itime"]
af[, mean(a), by = list(hour = hour(itime))]
af[, mean(a), by = list(wday = factor(weekdays(idate)))]
af[, mean(a), by = list(wday = wday(idate))]

as.POSIXct(af$idate)
as.POSIXct(af$idate, time = af$itime)
as.POSIXct(af$idate, af$itime)
as.POSIXct(af$idate, time = af$itime, tz = "GMT")

as.POSIXct(af$itime, af$idate)
as.POSIXct(af$itime) # uses today's date

(seqdates <- seq(as.IDate("2001-01-01"), as.IDate("2001-08-03"), by = "3 weeks"))
round(seqdates, "months")

(seqtimes <- seq(as.ITime("07:00"), as.ITime("08:00"), by = 20))
round(seqtimes, "hours")
trunc(seqtimes, "hours")

J Creates a join data.table

Description

Creates a data.table for use in i in a [.data.table join.

Usage

DT[J(...)] # J() only for use inside DT[...]
DT[.(...)] # .() only for use inside DT[...]
DT[list(...)] # same; .(), list() and J() are identical
SJ(...) # DT[SJ(...)]
CJ(..., sorted=TRUE, unique=FALSE) # DT[CJ(...)]

Arguments

... Each argument is a vector. Generally each vector is the same length, but if they
are not then the usual silent recycling is applied.

sorted logical. Should setkey() be called on all the columns in the order they were
passed to CJ?

unique logical. When TRUE, only unique values of each vectors are used (automatically).

last 73

Details

SJ and CJ are convenience functions to create a data.table to be used in i when performing a
data.table ’query’ on x.

x[data.table(id)] is the same as x[J(id)] but the latter is more readable. Identical alternatives
are x[list(id)] and x[.(id)].

When using a join table in i, x must either be keyed or the on argument be used to indicate the
columns in x and i which should be joined. See [.data.table.

Value

J : the same result as calling list, for which J is a direct alias.
SJ : Sorted Join. The same value as J() but additionally setkey() is called on all columns
in the order they were passed to SJ. For efficiency, to invoke a binary merge rather than a
repeated binary full search for each row of i.
CJ : Cross Join. A data.table is formed from the cross product of the vectors. For example,
CJ on 10 ids and 100 dates, returns a 1000 row table containing all dates for all ids. If sorted
= TRUE (default), setkey() is called on all columns in the order they were passed in to CJ. If
sorted = FALSE, the result is unkeyed and input order is retained.

See Also

data.table, test.data.table

Examples

DT = data.table(A=5:1, B=letters[5:1])
setkey(DT, B) # reorders table and marks it sorted
DT[J("b")] # returns the 2nd row
DT[list("b")] # same
DT[.("b")] # same using the dot alias for list

CJ usage examples
CJ(c(5, NA, 1), c(1, 3, 2)) # sorted and keyed data.table
do.call(CJ, list(c(5, NA, 1), c(1, 3, 2))) # same as above
CJ(c(5, NA, 1), c(1, 3, 2), sorted=FALSE) # same order as input, unkeyed
use for 'unique=' argument
x = c(1, 1, 2)
y = c(4, 6, 4)
CJ(x, y) # output columns are automatically named 'x' and 'y'
CJ(x, y, unique=TRUE) # unique(x) and unique(y) are computed automatically
CJ(x, y, sorted = FALSE) # retain input order for y

last First/last item of an object

74 like

Description

Returns the first/last item of a vector or list, or the first/last row of a data.frame or data.table. The
main difference to head/tail is that the default for n is 1 rather than 6.

Usage

first(x, n=1L, ...)
last(x, n=1L, ...)

Arguments

x A vector, list, data.frame or data.table. Otherwise the S3 method of xts::first
is deployed.

n A numeric vector length 1. How many items to select.

... Not applicable for data.table first/last. Any arguments here are passed through
to xts’s first/last.

Value

If no other arguments are supplied it depends on the type of x. The first/last item of a vector or list.
The first/last row of a data.frame or data.table. For other types, or if any argument is supplied
in addition to x (such as n, or keep in xts) regardless of x’s type, then xts::first/ xts::last is
called if xts has been loaded, otherwise utils::head/utils::tail.

See Also

NROW, head, tail

Examples

first(1:5) # [1] 1
x = data.table(x=1:5, y=6:10)
first(x) # same as head(x, 1)

last(1:5) # [1] 5
x = data.table(x=1:5, y=6:10)
last(x) # same as tail(x, 1)

like Convenience function for calling grep.

Description

Intended for use in i in [.data.table, i.e., for subsetting/filtering.

Syntax should be familiar to SQL users, with interpretation as regex.

like 75

Usage

like(vector, pattern, ignore.case = FALSE, fixed = FALSE, perl = FALSE)
vector %like% pattern
vector %ilike% pattern
vector %flike% pattern
vector %plike% pattern

Arguments

vector Either a character or a factor vector.

pattern Pattern to be matched

ignore.case logical; is pattern case-sensitive?

fixed logical; should pattern be interpreted as a literal string (i.e., ignoring regular
expressions)?

perl logical; is pattern Perl-compatible regular expression?

Details

Internally, like is essentially a wrapper around base::grepl, except that it is smarter about han-
dling factor input (base::grep uses slow as.character conversion).

Value

Logical vector, TRUE for items that match pattern.

Note

Current implementation does not make use of sorted keys.

See Also

base::grepl

Examples

DT = data.table(Name=c("Mary","George","Martha"), Salary=c(2,3,4))
DT[Name %like% "^Mar"]
DT[Name %ilike% "mar"]
DT[Name %flike% "Mar"]
DT[Name %plike% "(?=Ma)(?=.*y)"]

76 measure

measure Specify measure.vars via regex or separator

Description

These functions compute an integer vector or list for use as the measure.vars argument to melt.
Each measured variable name is converted into several groups that occupy different columns in the
output melted data. measure allows specifying group names/conversions in R code (each group and
conversion specified as an argument) whereas measurev allows specifying group names/conversions
using data values (each group and conversion specified as a list element). See vignette("datatable-reshape")
for more info.

Usage

measure(..., sep, pattern, cols, multiple.keyword="value.name")
measurev(fun.list, sep, pattern, cols, multiple.keyword="value.name")

Arguments

... One or more (1) symbols (without argument name; symbol is used for group
name) or (2) functions to convert the groups (with argument name that is used for
group name). Must have same number of arguments as groups that are specified
by either sep or pattern arguments.

fun.list Named list which must have the same number of elements as groups that are
specified by either sep or pattern arguments. Each name used for a group
name, and each value must be either a function (to convert the group from a
character vector to an atomic vector of the same size) or NULL (no conversion).

sep Separator to split each element of cols into groups. Columns that result in the
maximum number of groups are considered measure variables.

pattern Perl-compatible regex with capture groups to match to cols. Columns that
match the regex are considered measure variables.

cols A character vector of column names.
multiple.keyword

A string, if used as a group name, then measure returns a list and melt returns
multiple value columns (with names defined by the unique values in that group).
Otherwise if the string not used as a group name, then measure returns a vector
and melt returns a single value column.

See Also

melt, https://github.com/Rdatatable/data.table/wiki/Getting-started

../doc/datatable-reshape.html
https://github.com/Rdatatable/data.table/wiki/Getting-started

melt.data.table 77

Examples

(two.iris = data.table(datasets::iris)[c(1,150)])
melt into a single value column.
melt(two.iris, measure.vars = measure(part, dim, sep="."))
do the same, programmatically with measurev
my.list = list(part=NULL, dim=NULL)
melt(two.iris, measure.vars=measurev(my.list, sep="."))
melt into two value columns, one for each part.
melt(two.iris, measure.vars = measure(value.name, dim, sep="."))
melt into two value columns, one for each dim.
melt(two.iris, measure.vars = measure(part, value.name, sep="."))
melt using sep, converting child number to integer.
(two.families = data.table(sex_child1="M", sex_child2="F", age_child1=10, age_child2=20))
print(melt(two.families, measure.vars = measure(

value.name, child=as.integer,
sep="_child"

)), class=TRUE)
same melt using pattern.
print(melt(two.families, measure.vars = measure(

value.name, child=as.integer,
pattern="(.*)_child(.)"

)), class=TRUE)
same melt with pattern and measurev function list.
print(melt(two.families, measure.vars = measurev(

list(value.name=NULL, child=as.integer),
pattern="(.*)_child(.)"

)), class=TRUE)
inspired by data(who, package="tidyr")
(who <- data.table(id=1, new_sp_m5564=2, newrel_f65=3))
melt to three variable columns, all character.
melt(who, measure.vars = measure(diagnosis, gender, ages, pattern="new_?(.*)_(.)(.*)"))
melt to five variable columns, two numeric (with custom conversion).
print(melt(who, measure.vars = measure(

diagnosis, gender, ages,
ymin=as.numeric,
ymax=function(y)ifelse(y=="", Inf, as.numeric(y)),
pattern="new_?(.*)_(.)(([0-9]{2})([0-9]{0,2}))"

)), class=TRUE)

melt.data.table Fast melt for data.table

Description

melt is data.table’s wide-to-long reshaping tool. We provide an S3 method for melting data.tables.
It is written in C for speed and memory efficiency. Since v1.9.6, melt.data.table allows melting
into multiple columns simultaneously.

78 melt.data.table

Usage

fast melt a data.table
S3 method for class 'data.table'
melt(data, id.vars, measure.vars,

variable.name = "variable", value.name = "value",
..., na.rm = FALSE, variable.factor = TRUE,
value.factor = FALSE,
verbose = getOption("datatable.verbose"))

Arguments

data A data.table object to melt.

id.vars vector of id variables. Can be integer (corresponding id column numbers) or
character (id column names) vector. If missing, all non-measure columns will
be assigned to it. If integer, must be positive; see Details.

measure.vars Measure variables for melting. Can be missing, vector, list, or pattern-based.

• When missing, measure.vars will become all columns outside id.vars.
• Vector can be integer (implying column numbers) or character (column

names).
• list is a generalization of the vector version – each element of the list

(which should be integer or character as above) will become a melted
column.

• Pattern-based column matching can be achieved with the regular expression-
based patterns (regex without capture groups; matching column names
are used in the variable.name output column), or measure (regex with
capture groups; each capture group becomes an output column).

For convenience/clarity in the case of multiple melted columns, resulting col-
umn names can be supplied as names to the elements measure.vars (in the
list and patterns usages). See also Examples.

variable.name name (default 'variable') of output column containing information about which
input column(s) were melted. If measure.vars is an integer/character vector,
then each entry of this column contains the name of a melted column from data.
If measure.vars is a list of integer/character vectors, then each entry of this col-
umn contains an integer indicating an index/position in each of those vectors. If
measure.vars has attribute variable_table then it must be a data table with
nrow = length of measure.vars vector(s), each row describing the correspond-
ing measured variables(s), (typically created via measure) and its columns will
be output instead of the variable.name column.

value.name name for the molten data values column(s). The default name is 'value'. Mul-
tiple names can be provided here for the case when measure.vars is a list,
though note well that the names provided in measure.vars take precedence.

na.rm If TRUE, NA values will be removed from the molten data.
variable.factor

If TRUE, the variable column will be converted to factor, else it will be a
character column.

melt.data.table 79

value.factor If TRUE, the value column will be converted to factor, else the molten value
type is left unchanged.

verbose TRUE turns on status and information messages to the console. Turn this on by
default using options(datatable.verbose=TRUE). The quantity and types of
verbosity may be expanded in future.

... any other arguments to be passed to/from other methods.

Details

If id.vars and measure.vars are both missing, all non-numeric/integer/logical columns are
assigned as id variables and the rest as measure variables. If only one of id.vars or measure.vars
is supplied, the rest of the columns will be assigned to the other. Both id.vars and measure.vars
can have the same column more than once and the same column can be both as id and measure
variables.

melt.data.table also accepts list columns for both id and measure variables.

When all measure.vars are not of the same type, they’ll be coerced according to the hierarchy
list > character > numeric > integer > logical. For example, if any of the measure variables
is a list, then entire value column will be coerced to a list.

From version 1.9.6, melt gains a feature with measure.vars accepting a list of character or
integer vectors as well to melt into multiple columns in a single function call efficiently. If a
vector in the list contains missing values, or is shorter than the max length of the list elements, then
the output will include runs of missing values at the specified position, or at the end. The functions
patterns and measure can be used to provide regular expression patterns. When used along with
melt, if cols argument is not provided, the patterns will be matched against names(data), for
convenience.

Attributes are preserved if all value columns are of the same type. By default, if any of the columns
to be melted are of type factor, it’ll be coerced to character type. To get a factor column, set
value.factor = TRUE. melt.data.table also preserves ordered factors.

Historical note: melt.data.table was originally designed as an enhancement to reshape2::melt
in terms of computing and memory efficiency. reshape2 has since been superseded in favour of
tidyr, and melt has had a generic defined within data.table since v1.9.6 in 2015, at which point
the dependency between the packages became more etymological than programmatic. We thank the
reshape2 authors for the inspiration.

Value

An unkeyed data.table containing the molten data.

See Also

dcast, https://cran.r-project.org/package=reshape

Examples

set.seed(45)
require(data.table)
DT <- data.table(

https://cran.r-project.org/package=reshape

80 melt.data.table

i_1 = c(1:5, NA),
n_1 = c(NA, 6, 7, 8, 9, 10),
f_1 = factor(sample(c(letters[1:3], NA), 6L, TRUE)),
f_2 = factor(c("z", "a", "x", "c", "x", "x"), ordered=TRUE),
c_1 = sample(c(letters[1:3], NA), 6L, TRUE),
c_2 = sample(c(LETTERS[1:2], NA), 6L, TRUE),
d_1 = as.Date(c(1:3,NA,4:5), origin="2013-09-01"),
d_2 = as.Date(6:1, origin="2012-01-01")

)
add a couple of list cols
DT[, l_1 := DT[, list(c=list(rep(i_1, sample(5, 1L)))), by = i_1]$c]
DT[, l_2 := DT[, list(c=list(rep(c_1, sample(5, 1L)))), by = i_1]$c]

id.vars, measure.vars as character/integer/numeric vectors
melt(DT, id.vars=1:2, measure.vars="f_1")
melt(DT, id.vars=c("i_1", "n_1"), measure.vars=3) # same as above
melt(DT, id.vars=1:2, measure.vars=3L, value.factor=TRUE) # same, but 'value' is factor
melt(DT, id.vars=1:2, measure.vars=3:4, value.factor=TRUE) # 'value' is *ordered* factor

preserves attribute when types are identical, ex: Date
melt(DT, id.vars=3:4, measure.vars=c("d_1", "d_2"))
melt(DT, id.vars=3:4, measure.vars=c("n_1", "d_1")) # attribute not preserved

on list
melt(DT, id.vars=1, measure.vars=c("l_1", "l_2")) # value is a list
suppressWarnings(

melt(DT, id.vars=1, measure.vars=c("c_1", "l_1")) # c1 coerced to list, with warning
)

on character
melt(DT, id.vars=1, measure.vars=c("c_1", "f_1")) # value is char
suppressWarnings(

melt(DT, id.vars=1, measure.vars=c("c_1", "n_1")) # n_1 coerced to char, with warning
)

on na.rm=TRUE. NAs are removed efficiently, from within C
melt(DT, id.vars=1, measure.vars=c("c_1", "c_2"), na.rm=TRUE) # remove NA

measure.vars can be also a list
melt "f_1,f_2" and "d_1,d_2" simultaneously, retain 'factor' attribute
convenient way using internal function patterns()
melt(DT, id.vars=1:2, measure.vars=patterns("^f_", "^d_"), value.factor=TRUE)
same as above, but provide list of columns directly by column names or indices
melt(DT, id.vars=1:2, measure.vars=list(3:4, c("d_1", "d_2")), value.factor=TRUE)
same as above, but provide names directly:
melt(DT, id.vars=1:2, measure.vars=patterns(f="^f_", d="^d_"), value.factor=TRUE)

na.rm=TRUE removes rows with NAs in any 'value' columns
melt(DT, id.vars=1:2, measure.vars=patterns("f_", "d_"), value.factor=TRUE, na.rm=TRUE)

'na.rm=TRUE' also works with list column, but note that is.na only
returns TRUE if the list element is a length=1 vector with an NA.
is.na(list(one.NA=NA, two.NA=c(NA,NA)))

merge 81

melt(DT, id.vars=1:2, measure.vars=patterns("l_", "d_"), na.rm=FALSE)
melt(DT, id.vars=1:2, measure.vars=patterns("l_", "d_"), na.rm=TRUE)

measure list with missing/short entries results in output with runs of NA
DT.missing.cols <- DT[, .(d_1, d_2, c_1, f_2)]
melt(DT.missing.cols, measure.vars=list(d=1:2, c="c_1", f=c(NA, "f_2")))

specifying columns to melt via separator.
melt(DT.missing.cols, measure.vars=measure(value.name, number=as.integer, sep="_"))

specifying columns to melt via regex.
melt(DT.missing.cols, measure.vars=measure(value.name, number=as.integer, pattern="(.)_(.)"))
melt(DT.missing.cols, measure.vars=measure(value.name, number=as.integer, pattern="([dc])_(.)"))

cols arg of measure can be used if you do not want to use regex
melt(DT.missing.cols, measure.vars=measure(

value.name, number=as.integer, sep="_", cols=c("d_1","d_2","c_1")))

merge Merge two data.tables

Description

Fast merge of two data.tables. The data.table method behaves similarly to data.frame except
that row order is specified, and by default the columns to merge on are chosen:

• at first based on the shared key columns, and if there are none,

• then based on key columns of the first argument x, and if there are none,

• then based on the common columns between the two data.tables.

Use the by, by.x and by.y arguments explicitly to override this default.

Usage

S3 method for class 'data.table'
merge(x, y, by = NULL, by.x = NULL, by.y = NULL, all = FALSE,
all.x = all, all.y = all, sort = TRUE, suffixes = c(".x", ".y"), no.dups = TRUE,
allow.cartesian=getOption("datatable.allow.cartesian"), # default FALSE
incomparables = NULL, ...)

Arguments

x, y data tables. y is coerced to a data.table if it isn’t one already.

by A vector of shared column names in x and y to merge on. This defaults to
the shared key columns between the two tables. If y has no key columns, this
defaults to the key of x.

by.x, by.y Vectors of column names in x and y to merge on.

82 merge

all logical; all = TRUE is shorthand to save setting both all.x = TRUE and all.y =
TRUE.

all.x logical; if TRUE, rows from x which have no matching row in y are included.
These rows will have ’NA’s in the columns that are usually filled with values
from y. The default is FALSE so that only rows with data from both x and y are
included in the output.

all.y logical; analogous to all.x above.

sort logical. If TRUE (default), the rows of the merged data.table are sorted by
setting the key to the by / by.x columns. If FALSE, unlike base R’s merge for
which row order is unspecified, the row order in x is retained (including retaining
the position of missing entries when all.x=TRUE), followed by y rows that don’t
match x (when all.y=TRUE) retaining the order those appear in y.

suffixes A character(2) specifying the suffixes to be used for making non-by col-
umn names unique. The suffix behaviour works in a similar fashion as the
merge.data.frame method does.

no.dups logical indicating that suffixes are also appended to non-by.y column names
in y when they have the same column name as any by.x.

allow.cartesian

See allow.cartesian in [.data.table.

incomparables values which cannot be matched and therefore are excluded from by columns.

... Not used at this time.

Details

merge is a generic function in base R. It dispatches to either the merge.data.frame method or
merge.data.table method depending on the class of its first argument. Note that, unlike SQL join,
NA is matched against NA (and NaN against NaN) while merging.

For a more data.table-centric way of merging two data.tables, see [.data.table; e.g., x[y,
...]. See FAQ 1.11 for a detailed comparison of merge and x[y, ...].

Value

A new data.table based on the merged data tables, and sorted by the columns set (or inferred
for) the by argument if argument sort is set to TRUE.

See Also

data.table, setkey, [.data.table, merge.data.frame

Examples

(dt1 <- data.table(A = letters[1:10], X = 1:10, key = "A"))
(dt2 <- data.table(A = letters[5:14], Y = 1:10, key = "A"))
merge(dt1, dt2)
merge(dt1, dt2, all = TRUE)

(dt1 <- data.table(A = letters[rep(1:3, 2)], X = 1:6, key = "A"))

na.omit.data.table 83

(dt2 <- data.table(A = letters[rep(2:4, 2)], Y = 6:1, key = "A"))
merge(dt1, dt2, allow.cartesian=TRUE)

(dt1 <- data.table(A = c(rep(1L, 5), 2L), B = letters[rep(1:3, 2)], X = 1:6, key = c("A", "B")))
(dt2 <- data.table(A = c(rep(1L, 5), 2L), B = letters[rep(2:4, 2)], Y = 6:1, key = c("A", "B")))
merge(dt1, dt2)
merge(dt1, dt2, by="B", allow.cartesian=TRUE)

test it more:
d1 <- data.table(a=rep(1:2,each=3), b=1:6, key=c("a", "b"))
d2 <- data.table(a=0:1, bb=10:11, key="a")
d3 <- data.table(a=0:1, key="a")
d4 <- data.table(a=0:1, b=0:1, key=c("a", "b"))

merge(d1, d2)
merge(d2, d1)
merge(d1, d2, all=TRUE)
merge(d2, d1, all=TRUE)

merge(d3, d1)
merge(d1, d3)
merge(d1, d3, all=TRUE)
merge(d3, d1, all=TRUE)

merge(d1, d4)
merge(d1, d4, by="a", suffixes=c(".d1", ".d4"))
merge(d4, d1)
merge(d1, d4, all=TRUE)
merge(d4, d1, all=TRUE)

setkey is automatic by default
set.seed(1L)
d1 <- data.table(a=sample(rep(1:3,each=2)), z=1:6)
d2 <- data.table(a=2:0, z=10:12)
merge(d1, d2, by="a")
merge(d1, d2, by="a", all=TRUE)

using by.x and by.y
setnames(d2, "a", "b")
merge(d1, d2, by.x="a", by.y="b")
merge(d1, d2, by.x="a", by.y="b", all=TRUE)
merge(d2, d1, by.x="b", by.y="a")

using incomparables values
d1 <- data.table(a=c(1,2,NA,NA,3,1), z=1:6)
d2 <- data.table(a=c(1,2,NA), z=10:12)
merge(d1, d2, by="a")
merge(d1, d2, by="a", incomparables=NA)

na.omit.data.table Remove rows with missing values on columns specified

84 na.omit.data.table

Description

This is a data.table method for the S3 generic stats::na.omit. The internals are written in C
for speed. See examples for benchmark timings.

bit64::integer64 type is also supported.

Usage

S3 method for class 'data.table'
na.omit(object, cols=seq_along(object), invert=FALSE, ...)

Arguments

object A data.table.

cols A vector of column names (or numbers) on which to check for missing values.
Default is all the columns.

invert logical. If FALSE omits all rows with any missing values (default). TRUE returns
just those rows with missing values instead.

... Further arguments special methods could require.

Details

The data.table method consists of an additional argument cols, which when specified looks for
missing values in just those columns specified. The default value for cols is all the columns, to be
consistent with the default behaviour of stats::na.omit.

It does not add the attribute na.action as stats::na.omit does.

Value

A data.table with just the rows where the specified columns have no missing value in any of them.

See Also

data.table

Examples

DT = data.table(x=c(1,NaN,NA,3), y=c(NA_integer_, 1:3), z=c("a", NA_character_, "b", "c"))
default behaviour
na.omit(DT)
omit rows where 'x' has a missing value
na.omit(DT, cols="x")
omit rows where either 'x' or 'y' have missing values
na.omit(DT, cols=c("x", "y"))

Not run:
Timings on relatively large data
set.seed(1L)
DT = data.table(x = sample(c(1:100, NA_integer_), 5e7L, TRUE),

y = sample(c(rnorm(100), NA), 5e7L, TRUE))

nafill 85

system.time(ans1 <- na.omit(DT)) ## 2.6 seconds
system.time(ans2 <- stats:::na.omit.data.frame(DT)) ## 29 seconds
identical? check each column separately, as ans2 will have additional attribute
all(sapply(1:2, function(i) identical(ans1[[i]], ans2[[i]]))) ## TRUE

End(Not run)

nafill Fill missing values

Description

Fast fill missing values using constant value, last observation carried forward or next observation
carried backward.

Usage

nafill(x, type=c("const","locf","nocb"), fill=NA, nan=NA)
setnafill(x, type=c("const","locf","nocb"), fill=NA, nan=NA, cols=seq_along(x))

Arguments

x vector, list, data.frame or data.table of numeric columns.

type character, one of "const", "locf" or "nocb". Defaults to "const".

fill numeric or integer, value to be used to fill.

nan (numeric x only) Either NaN or NA; if the former, NaN is treated as distinct from
NA, otherwise, they are treated the same during replacement?

cols numeric or character vector specifying columns to be updated.

Details

Only double and integer data types are currently supported.

Note that both nafill and setnafill provide some verbose output when getOption('datatable.verbose')
is TRUE.

Value

A list except when the input is a vector in which case a vector is returned. For setnafill the
input argument is returned, updated by reference.

See Also

shift, data.table

86 notin

Examples

x = 1:10
x[c(1:2, 5:6, 9:10)] = NA
nafill(x, "locf")

dt = data.table(v1=x, v2=shift(x)/2, v3=shift(x, -1L)/2)
nafill(dt, "nocb")

setnafill(dt, "locf", cols=c("v2","v3"))
dt

notin Convenience operator for checking if an example is not in a set of
elements

Description

Check whether an object is absent from a table, i.e., the logical inverse of in. See examples on how
missing values are being handled.

Usage

x %notin% table

Arguments

x Vector or NULL: the values to be matched.
table Vector or NULL: the values to be matched against.

Value

Logical vector, TRUE for each element of x absent from table, and FALSE for each element of x
present in table.

See Also

match, chmatch

Examples

11 %notin% 1:10 # TRUE
"a" %notin% c("a", "b") # FALSE

NAs on the LHS
NA %in% 1:2
NA %notin% 1:2
NAs on the RHS
NA %in% c(1:2,NA)
NA %notin% c(1:2,NA)

patterns 87

patterns Obtain matching indices corresponding to patterns

Description

patterns returns the elements of cols that match the regular expression patterns, which must be
supported by grep.

From v1.9.6, melt.data.table has an enhanced functionality in which measure.vars argu-
ment can accept a list of column names and melt them into separate columns. See the Efficient
reshaping using data.tables vignette linked below to learn more.

Usage

patterns(
..., cols=character(0),
ignore.case=FALSE, perl=FALSE,
fixed=FALSE, useBytes=FALSE)

Arguments

... A set of regular expression patterns.

cols A character vector of names to which each pattern is matched.

ignore.case, perl, fixed, useBytes
Passed to grep.

See Also

melt, https://github.com/Rdatatable/data.table/wiki/Getting-started

Examples

DT = data.table(x1 = 1:5, x2 = 6:10, y1 = letters[1:5], y2 = letters[6:10])
melt all columns that begin with 'x' & 'y', respectively, into separate columns
melt(DT, measure.vars = patterns("^x", "^y", cols=names(DT)))
when used with melt, 'cols' is implicitly assumed to be names of input
data.table, if not provided.
melt(DT, measure.vars = patterns("^x", "^y"))

https://github.com/Rdatatable/data.table/wiki/Getting-started

88 print.data.table

print.data.table data.table Printing Options

Description

print.data.table extends the functionalities of print.data.frame.

Key enhancements include automatic output compression of many observations and concise column-
wise class summary.

format_col and format_list_item generics provide flexibility for end-users to define custom
printing methods for generic classes.

Note also the option datatable.prettyprint.char; character columns entries exceeding this
limit will be truncated, with ... indicating the truncation.

Usage

S3 method for class 'data.table'
print(x,

topn=getOption("datatable.print.topn"), # default: 5
nrows=getOption("datatable.print.nrows"), # default: 100
class=getOption("datatable.print.class"), # default: TRUE
row.names=getOption("datatable.print.rownames"), # default: TRUE
col.names=getOption("datatable.print.colnames"), # default: "auto"
print.keys=getOption("datatable.print.keys"), # default: TRUE
trunc.cols=getOption("datatable.print.trunc.cols"), # default: FALSE
show.indices=getOption("datatable.show.indices"), # default: FALSE
quote=FALSE,
na.print=NULL,
timezone=FALSE, ...)

format_col(x, ...)
Default S3 method:

format_col(x, ...)
S3 method for class 'POSIXct'

format_col(x, ..., timezone=FALSE)
S3 method for class 'expression'

format_col(x, ...)

format_list_item(x, ...)
Default S3 method:

format_list_item(x, ...)

Arguments

x A data.table.

topn The number of rows to be printed from the beginning and end of tables with
more than nrows rows.

print.data.table 89

nrows The number of rows which will be printed before truncation is enforced.

class If TRUE, the resulting output will include above each column its storage class (or
a self-evident abbreviation thereof).

row.names If TRUE, row indices will be printed alongside x.

col.names One of three flavours for controlling the display of column names in output.
"auto" includes column names above the data, as well as below the table if
nrow(x) > 20. "top" excludes this lower register when applicable, and "none"
suppresses column names altogether (as well as column classes if class = TRUE.

print.keys If TRUE, any key and/or index currently assigned to x will be printed prior to
the preview of the data.

trunc.cols If TRUE, only the columns that can be printed in the console without wrapping
the columns to new lines will be printed (similar to tibbles).

show.indices If TRUE, indices will be printed as columns alongside x.

quote If TRUE, all output will appear in quotes, as in print.default.

timezone If TRUE, time columns of class POSIXct or POSIXlt will be printed with their
timezones (if attribute is available).

na.print The string to be printed in place of NA values, as in print.default.

... Other arguments ultimately passed to format.

Details

By default, with an eye to the typically large number of observations in a data.table, only the
beginning and end of the object are displayed (specifically, head(x, topn) and tail(x, topn) are
displayed unless nrow(x) < nrows, in which case all rows will print).

format_col is applied at a column level; for example, format_col.POSIXct is used to tag the time
zones of POSIXct columns. format_list_item is applied to the elements (rows) of list columns;
see Examples. The default format_col method uses getS3method to test if a format method exists
for the column, and if so uses it. Otherwise, the default format_list_item method uses the S3
format method (if one exists) for each item of a list column.

Value

print.data.table returns x invisibly.

format_col returns a length(x)-size character vector.

format_list_item returns a length-1 character scalar.

See Also

print.default

Examples

#output compression
DT <- data.table(a = 1:1000)
print(DT, nrows = 100, topn = 4)

90 print.data.table

#`quote` can be used to identify whitespace
DT <- data.table(blanks = c(" 12", " 34"),

noblanks = c("12", "34"))
print(DT, quote = TRUE)

#`class` provides handy column type summaries at a glance
DT <- data.table(a = vector("integer", 3),

b = vector("complex", 3),
c = as.IDate(paste0("2016-02-0", 1:3)))

print(DT, class = TRUE)

#`row.names` can be eliminated to save space
DT <- data.table(a = 1:3)
print(DT, row.names = FALSE)

#`print.keys` can alert which columns are currently keys
DT <- data.table(a=1:3, b=4:6, c=7:9, key=c("b", "a"))
setindexv(DT, c("a", "b"))
setindexv(DT, "a")
print(DT, print.keys=TRUE)

`trunc.cols` will make it so only columns that fit in console will be printed
with a message that states the variables not shown
old_width = options("width" = 40)
DT <- data.table(thing_11 = vector("integer", 3),

thing_21 = vector("complex", 3),
thing_31 = as.IDate(paste0("2016-02-0", 1:3)),
thing_41 = "aasdfasdfasdfasdfasdfasdfasdfasdfasdfasdf",
thing_51 = vector("integer", 3),
thing_61 = vector("complex", 3))

print(DT, trunc.cols=TRUE)
options(old_width)

`char.trunc` will truncate the strings,
if their lengths exceed the given limit: `datatable.prettyprint.char`
For example:

old = options(datatable.prettyprint.char=5L)
DT = data.table(x=1:2, y=c("abcdefghij", "klmnopqrstuv"))
DT
options(old)

Formatting customization
format_col.complex = function(x, ...) sprintf('(%.1f, %.1fi)', Re(x), Im(x))
x = data.table(z = c(1 + 3i, 2 - 1i, pi + 2.718i))
print(x)

old = options(datatable.show.indices=TRUE)
NN = 200
set.seed(2024)
DT = data.table(

grp1 = sample(100, NN, TRUE),
grp2 = sample(90, NN, TRUE),

rbindlist 91

grp3 = sample(80, NN, TRUE)
)
setkey(DT, grp1, grp2)
setindex(DT, grp1, grp3)
print(DT)
options(old)

iris = as.data.table(iris)
iris_agg = iris[, .(reg = list(lm(Sepal.Length ~ Petal.Length))), by = Species]
format_list_item.lm = function(x, ...) sprintf('<lm:%s>', format(x$call$formula))
print(iris_agg)

rbindlist Makes one data.table from a list of many

Description

Same as do.call(rbind, l) on data.frames, but much faster.

Usage

rbindlist(l, use.names="check", fill=FALSE, idcol=NULL, ignore.attr=FALSE)
rbind(..., use.names=TRUE, fill=FALSE, idcol=NULL)

Arguments

l A list containing data.table, data.frame or list objects. ... is the same but
you pass the objects by name separately.

use.names TRUE binds by matching column name, FALSE by position. ‘check‘ (default)
warns if all items don’t have the same names in the same order and then cur-
rently proceeds as if ‘use.names=FALSE‘ for backwards compatibility (TRUE in
future); see news for v1.12.2.

fill TRUE fills missing columns with NAs, or NULL for missing list columns. By
default FALSE.

idcol Creates a column in the result showing which list item those rows came from.
TRUE names this column ".id". idcol="file" names this column "file". If
the input list has names, those names are the values placed in this id column,
otherwise the values are an integer vector 1:length(l). See examples.

ignore.attr Logical, default FALSE. When TRUE, allows binding columns with different at-
tributes (e.g. class).

Details

Each item of l can be a data.table, data.frame or list, including NULL (skipped) or an empty
object (0 rows). rbindlist is most useful when there are an unknown number of (potentially
many) objects to stack, such as returned by lapply(fileNames, fread). rbind is most useful to
stack two or three objects which you know in advance. ... should contain at least one data.table

92 rbindlist

for rbind(...) to call the fast method and return a data.table, whereas rbindlist(l) always
returns a data.table even when stacking a plain list with a data.frame, for example.

Columns with duplicate names are bound in the order of occurrence, similar to base. The position
(column number) that each duplicate name occurs is also retained.

If column i does not have the same type in each of the list items; e.g, the column is integer in item
1 while others are numeric, they are coerced to the highest type.

If a column contains factors then a factor is created. If any of the factors are also ordered factors
then the longest set of ordered levels are found (the first if this is tied). Then the ordered levels from
each list item are checked to be an ordered subset of these longest levels. If any ambiguities are
found (e.g. blue<green vs green<blue), or any ordered levels are missing from the longest, then
a regular factor is created with warning. Any strings in regular factor and character columns which
are missing from the longest ordered levels are added at the end.

When binding lists of data.table or data.frame objects containing objects with units defined by
class attributes (e.g., difftime objects with different units), the resulting data.table may not pre-
serve the original units correctly. Instead, values will be converted to a common unit without proper
conversion of the values themselves. This issue applies to any class where the unit or precision is
determined by attributes. Users should manually ensure that objects with unit-dependent attributes
have consistent units before using rbindlist.

Value

An unkeyed data.table containing a concatenation of all the items passed in.

See Also

data.table, split.data.table

Examples

default case
DT1 = data.table(A=1:3,B=letters[1:3])
DT2 = data.table(A=4:5,B=letters[4:5])
l = list(DT1,DT2)
rbindlist(l)

bind correctly by names
DT1 = data.table(A=1:3,B=letters[1:3])
DT2 = data.table(B=letters[4:5],A=4:5)
l = list(DT1,DT2)
rbindlist(l, use.names=TRUE)

fill missing columns, and match by col names
DT1 = data.table(A=1:3,B=letters[1:3])
DT2 = data.table(B=letters[4:5],C=factor(1:2))
l = list(DT1,DT2)
rbindlist(l, use.names=TRUE, fill=TRUE)

generate index column, auto generates indices
rbindlist(l, use.names=TRUE, fill=TRUE, idcol=TRUE)
let's name the list

rleid 93

setattr(l, 'names', c("a", "b"))
rbindlist(l, use.names=TRUE, fill=TRUE, idcol="ID")

bind different classes
DT1 = data.table(A=1:3,B=letters[1:3])
DT2 = data.table(A=4:5,B=letters[4:5])
setattr(DT1[["A"]], "class", c("a", "integer"))
rbind(DT1, DT2, ignore.attr=TRUE)

rleid Generate run-length type group id

Description

A convenience function for generating a run-length type id column to be used in grouping opera-
tions. It accepts atomic vectors, lists, data.frames or data.tables as input.

Usage

rleid(..., prefix=NULL)
rleidv(x, cols=seq_along(x), prefix=NULL)

Arguments

x A vector, list, data.frame or data.table.

... A sequence of numeric, integer64, character or logical vectors, all of same
length. For interactive use.

cols Only meaningful for lists, data.frames or data.tables. A character vector of col-
umn names (or numbers) of x.

prefix Either NULL (default) or a character vector of length=1 which is prefixed to the
row ids, returning a character vector (instead of an integer vector).

Details

At times aggregation (or grouping) operations need to be performed where consecutive runs of
identical values should belong to the same group (See rle). The use for such a function has come
up repeatedly on StackOverflow, see the See Also section. This function allows to generate "run-
length" groups directly.

rleid is designed for interactive use and accepts a sequence of vectors as arguments. For program-
ming, rleidv might be more useful.

Value

When prefix = NULL, an integer vector with same length as NROW(x), else a character vector with
the value in prefix prefixed to the ids obtained.

94 roll

See Also

data.table, rowid, https://stackoverflow.com/q/21421047/559784

Examples

DT = data.table(grp=rep(c("A", "B", "C", "A", "B"), c(2,2,3,1,2)), value=1:10)
rleid(DT$grp) # get run-length ids
rleidv(DT, "grp") # same as above

rleid(DT$grp, prefix="grp") # prefix with 'grp'

get sum of value over run-length groups
DT[, sum(value), by=.(grp, rleid(grp))]
DT[, sum(value), by=.(grp, rleid(grp, prefix="grp"))]

roll Rolling functions

Description

Fast rolling functions to calculate aggregates on sliding windows. Function name and arguments
are experimental.

Usage

frollmean(x, n, fill=NA, algo=c("fast", "exact"),
align=c("right", "left", "center"), na.rm=FALSE, hasNA=NA, adaptive=FALSE)

frollsum(x, n, fill=NA, algo=c("fast","exact"),
align=c("right", "left", "center"), na.rm=FALSE, hasNA=NA, adaptive=FALSE)

frollapply(x, n, FUN, ..., fill=NA, align=c("right", "left", "center"))

Arguments

x Vector, data.frame or data.table of integer, numeric or logical columns over
which to calculate the windowed aggregations. May also be a list, in which case
the rolling function is applied to each of its elements.

n Integer vector giving rolling window size(s). This is the total number of included
values. Adaptive rolling functions also accept a list of integer vectors.

fill Numeric; value to pad by. Defaults to NA.

algo Character, default "fast". When set to "exact", a slower (but more accurate)
algorithm is used. It suffers less from floating point rounding errors by perform-
ing an extra pass, and carefully handles all non-finite values. It will use multiple
cores where available. See Details for more information.

https://stackoverflow.com/q/21421047/559784

roll 95

align Character, specifying the "alignment" of the rolling window, defaulting to "right".
"right" covers preceding rows (the window ends on the current value); "left"
covers following rows (the window starts on the current value); "center" is
halfway in between (the window is centered on the current value, biased to-
wards "left" when n is even).

na.rm Logical, default FALSE. Should missing values be removed when calculating
window? For details on handling other non-finite values, see Details.

hasNA Logical. If it is known that x contains NA then setting this to TRUE will speed up
calculation. Defaults to NA.

adaptive Logical, default FALSE. Should the rolling function be calculated adaptively?
See Details below.

FUN The function to be applied to the rolling window; see Details for restrictions.
... Extra arguments passed to FUN in frollapply.

Details

froll* functions accept vectors, lists, data.frames or data.tables. They always return a list
except when the input is a vector and length(n)==1, in which case a vector is returned, for
convenience. Thus, rolling functions can be used conveniently within data.table syntax.

Argument n allows multiple values to apply rolling functions on multiple window sizes. If adaptive=TRUE,
then n must be a list. Each list element must be integer vector of window sizes corresponding to
every single observation in each column; see Examples.

When algo="fast" an "on-line" algorithm is used, and all of NaN, +Inf, -Inf are treated as NA.
Setting algo="exact" will make rolling functions to use a more computationally-intensive algo-
rithm that suffers less from floating point rounding error (the same consideration applies to mean).
algo="exact" also handles NaN, +Inf, -Inf consistently to base R. In case of some functions
(like mean), it will additionally make extra pass to perform floating point error correction. Error
corrections might not be truly exact on some platforms (like Windows) when using multiple threads.

Adaptive rolling functions are a special case where each observation has its own corresponding
rolling window width. Due to the logic of adaptive rolling functions, the following restrictions
apply:

• align only "right".
• if list of vectors is passed to x, then all vectors within it must have equal length.

When multiple columns or multiple windows width are provided, then they are run in parallel. The
exception is for algo="exact", which runs in parallel already.

frollapply computes rolling aggregate on arbitrary R functions. The input x (first argument) to
the function FUN is coerced to numeric beforehand and FUN has to return a scalar numeric value.
Checks for that are made only during the first iteration when FUN is evaluated. Edge cases can
be found in examples below. Any R function is supported, but it is not optimized using our own C
implementation – hence, for example, using frollapply to compute a rolling average is inefficient.
It is also always single-threaded because there is no thread-safe API to R’s C eval. Nevertheless
we’ve seen the computation speed up vis-a-vis versions implemented in base R.

Value

A list except when the input is a vector and length(n)==1 in which case a vector is returned.

96 roll

Note

Users coming from most popular package for rolling functions zoo might expect following differ-
ences in data.table implementation.

• rolling function will always return result of the same length as input.

• fill defaults to NA.

• fill accepts only constant values. It does not support for na.locf or other functions.

• align defaults to "right".

• na.rm is respected, and other functions are not needed when input contains NA.

• integers and logical are always coerced to double.

• when adaptive=FALSE (default), then n must be a numeric vector. List is not accepted.

• when adaptive=TRUE, then n must be vector of length equal to nrow(x), or list of such vec-
tors.

• partial window feature is not supported, although it can be accomplished by using adaptive=TRUE,
see examples. NA is always returned for incomplete windows.

Be aware that rolling functions operates on the physical order of input. If the intent is to roll values
in a vector by a logical window, for example an hour, or a day, one has to ensure that there are no
gaps in input. For details see issue #3241.

References

Round-off error

See Also

shift, data.table

Examples

d = as.data.table(list(1:6/2, 3:8/4))
rollmean of single vector and single window
frollmean(d[, V1], 3)
multiple columns at once
frollmean(d, 3)
multiple windows at once
frollmean(d[, .(V1)], c(3, 4))
multiple columns and multiple windows at once
frollmean(d, c(3, 4))
three calls above will use multiple cores when available

partial window using adaptive rolling function
an = function(n, len) c(seq.int(n), rep(n, len-n))
n = an(3, nrow(d))
frollmean(d, n, adaptive=TRUE)

frollsum
frollsum(d, 3:4)

https://github.com/Rdatatable/data.table/issues/3241
https://en.wikipedia.org/wiki/Round-off_error

roll 97

frollapply
frollapply(d, 3:4, sum)
f = function(x, ...) if (sum(x, ...)>5) min(x, ...) else max(x, ...)
frollapply(d, 3:4, f, na.rm=TRUE)

performance vs exactness
set.seed(108)
x = sample(c(rnorm(1e3, 1e6, 5e5), 5e9, 5e-9))
n = 15
ma = function(x, n, na.rm=FALSE) {

ans = rep(NA_real_, nx<-length(x))
for (i in n:nx) ans[i] = mean(x[(i-n+1):i], na.rm=na.rm)
ans

}
fastma = function(x, n, na.rm) {

if (!missing(na.rm)) stop("NAs are unsupported, wrongly propagated by cumsum")
cs = cumsum(x)
scs = shift(cs, n)
scs[n] = 0
as.double((cs-scs)/n)

}
system.time(ans1<-ma(x, n))
system.time(ans2<-fastma(x, n))
system.time(ans3<-frollmean(x, n))
system.time(ans4<-frollmean(x, n, algo="exact"))
system.time(ans5<-frollapply(x, n, mean))
anserr = list(

fastma = ans2-ans1,
froll_fast = ans3-ans1,
froll_exact = ans4-ans1,
frollapply = ans5-ans1

)
errs = sapply(lapply(anserr, abs), sum, na.rm=TRUE)
sapply(errs, format, scientific=FALSE) # roundoff

frollapply corner cases
f = function(x) head(x, 2) ## FUN returns non length 1
try(frollapply(1:5, 3, f))
f = function(x) { ## FUN sometimes returns non length 1

n = length(x)
length 1 will be returned only for first iteration where we check length
if (n==x[n]) x[1L] else range(x) # range(x)[2L] is silently ignored!

}
frollapply(1:5, 3, f)
options(datatable.verbose=TRUE)
x = c(1,2,1,1,1,2,3,2)
frollapply(x, 3, uniqueN) ## FUN returns integer
numUniqueN = function(x) as.numeric(uniqueN(x))
frollapply(x, 3, numUniqueN)
x = c(1,2,1,1,NA,2,NA,2)
frollapply(x, 3, anyNA) ## FUN returns logical
as.logical(frollapply(x, 3, anyNA))

98 rowid

options(datatable.verbose=FALSE)
f = function(x) { ## FUN returns character

if (sum(x)>5) "big" else "small"
}
try(frollapply(1:5, 3, f))
f = function(x) { ## FUN is not type-stable

n = length(x)
double type will be returned only for first iteration where we check type
if (n==x[n]) 1 else NA # NA logical turns into garbage without coercion to double

}
try(frollapply(1:5, 3, f))

rowid Generate unique row ids within each group

Description

Convenience functions for generating a unique row ids within each group. It accepts atomic vectors,
lists, data.frames or data.tables as input.

rowid is intended for interactive use, particularly along with the function dcast to generate unique
ids directly in the formula.

rowidv(DT, cols=c("x", "y")) is equivalent to column N in the code DT[, N := seq_len(.N),
by=c("x", "y")].

See examples for more.

Usage

rowid(..., prefix=NULL)
rowidv(x, cols=seq_along(x), prefix=NULL)

Arguments

x A vector, list, data.frame or data.table.

... A sequence of numeric, integer64, character or logical vectors, all of same
length. For interactive use.

cols Only meaningful for lists, data.frames or data.tables. A character vector of col-
umn names (or numbers) of x.

prefix Either NULL (default) or a character vector of length=1 which is prefixed to the
row ids, returning a character vector (instead of an integer vector).

Value

When prefix = NULL, an integer vector with same length as NROW(x), else a character vector with
the value in prefix prefixed to the ids obtained.

rowwiseDT 99

See Also

dcast.data.table, rleid

Examples

DT = data.table(x=c(20,10,10,30,30,20), y=c("a", "a", "a", "b", "b", "b"), z=1:6)

rowid(DT$x) # 1,1,2,1,2,2
rowidv(DT, cols="x") # same as above

rowid(DT$x, prefix="group") # prefixed with 'group'

rowid(DTx, DTy) # 1,1,2,1,2,1
rowidv(DT, cols=c("x","y")) # same as above
DT[, .(N=seq_len(.N)), by=.(x,y)]$N # same as above

convenient usage with dcast
dcast(DT, x ~ rowid(x, prefix="group"), value.var="z")
x group1 group2
1: 10 2 3
2: 20 1 6
3: 30 4 5

rowwiseDT Create a data.table row-wise

Description

rowwiseDT creates a data.table object by specifying a row-by-row layout. This is convenient and
highly readable for small tables.

Usage

rowwiseDT(...)

Arguments

... Arguments that define the structure of a data.table. The column names come
from named arguments (like col=), which must precede the data. See Examples.

Value

A data.table. The default is for each column to return as a vector. However, if any entry has a
length that is not one (e.g., list(1, 2)), the whole column will be converted to a list column.

See Also

data.table

100 setattr

Examples

rowwiseDT(
A=,B=, C=,
1, "a",2:3,
2, "b",list(5)

)

setattr Set attributes of objects by reference

Description

In data.table, all set* functions change their input by reference. That is, no copy is made at all,
other than temporary working memory which is as large as one column. The only other data.table
operator that modifies input by reference is :=. Check out the See Also section below for other set*
function that data.table provides.

Usage

setattr(x,name,value)
setnames(x,old,new,skip_absent=FALSE)

Arguments

x setnames accepts data.frame and data.table. setattr accepts any input;
e.g, list, columns of a data.frame or data.table.

name The character attribute name.

value The value to assign to the attribute or NULL removes the attribute, if present.

old When new is provided, character names or numeric positions of column names
to change. When new is not provided, a function or the new column names
(i.e., it’s implicitly treated as new; excluding old and explicitly naming new is
equivalent). If a function, it will be called with the current column names and is
supposed to return the new column names. The new column names must be the
same length as the number of columns. See examples.

new Optional. It can be a function or the new column names. If a function, it will be
called with old and expected to return the new column names. The new column
names must be the same length as columns provided to old argument. Missing
values in new mean to not rename that column, note: missing values are only
allowed when old is not provided.

skip_absent Skip items in old that are missing (i.e. absent) in ‘names(x)‘. Default FALSE
halts with error if any are missing.

setattr 101

Details

setnames operates on data.table and data.frame not other types like list and vector. It can
be used to change names by name with built-in checks and warnings (e.g., if any old names are
missing or appear more than once).

setattr is a more general function that allows setting of any attribute to an object by reference.

A very welcome change in R 3.1+ was that ‘names<-‘ and ‘colnames<-‘ no longer copy the entire
object as they used to (up to 4 times), see examples below. They now take a shallow copy. The ‘set*‘
functions in data.table are still useful because they don’t even take a shallow copy. This allows
changing names and attributes of a (usually very large) data.table in the global environment from
within functions. Like a database.

Value

The input is modified by reference, and returned (invisibly) so it can be used in compound state-
ments; e.g., setnames(DT,"V1", "Y")[, .N, by=Y]. If you require a copy, take a copy first (using
DT2=copy(DT)). See ?copy.

Note that setattr is also in package bit. Both packages merely expose R’s internal setAttrib
function at C level but differ in return value. bit::setattr returns NULL (invisibly) to remind you
the function is used for its side effect. data.table::setattr returns the changed object (invisibly)
for use in compound statements.

See Also

data.table, setkey, setorder, setcolorder, set, :=, setDT, setDF, copy

Examples

DT <- data.table(a = 1, b = 2, d = 3)

old <- c("a", "b", "c", "d")
new <- c("A", "B", "C", "D")

setnames(DT, old, new, skip_absent = TRUE) # skips old[3] because "c" is not a column name of DT

DF = data.frame(a=1:2,b=3:4) # base data.frame to demo copies and syntax
if (capabilities()["profmem"]) # usually memory profiling is available but just in case

tracemem(DF)
colnames(DF)[1] <- "A" # 4 shallow copies (R >= 3.1, was 4 deep copies before)
names(DF)[1] <- "A" # 3 shallow copies
names(DF) <- c("A", "b") # 1 shallow copy
`names<-`(DF,c("A","b")) # 1 shallow copy

DT = data.table(a=1:2,b=3:4,c=5:6) # compare to data.table
if (capabilities()["profmem"])

tracemem(DT) # by reference, no deep or shallow copies
setnames(DT,"b","B") # by name, no match() needed (warning if "b" is missing)
setnames(DT,3,"C") # by position with warning if 3 > ncol(DT)
setnames(DT,2:3,c("D","E")) # multiple
setnames(DT,c("a","E"),c("A","F")) # multiple by name (warning if either "a" or "E" is missing)
setnames(DT,c("X","Y","Z")) # replace all (length of names must be == ncol(DT))

102 setcolorder

setnames(DT,tolower) # replace all names with their lower case
setnames(DT,2:3,toupper) # replace the 2nd and 3rd names with their upper case

DT <- data.table(x = 1:3, y = 4:6, z = 7:9)
setnames(DT, -2, c("a", "b")) # NEW FR #1443, allows -ve indices in 'old' argument

DT = data.table(a=1:3, b=4:6)
f = function(...) {

...
setattr(DT,"myFlag",TRUE) # by reference
...
localDT = copy(DT)
setattr(localDT,"myFlag2",TRUE)
...
invisible()

}
f()
attr(DT,"myFlag") # TRUE
attr(DT,"myFlag2") # NULL

setcolorder Fast column reordering of a data.table by reference

Description

In data.table parlance, all set* functions change their input by reference. That is, no copy is
made at all, other than temporary working memory, which is as large as one column. The only
other data.table operator that modifies input by reference is :=. Check out the See Also section
below for other set* function data.table provides.

setcolorder reorders the columns of data.table, by reference, to the new order provided.

Usage

setcolorder(x, neworder=key(x), before=NULL, after=NULL)

Arguments

x A data.table.

neworder Character vector of the new column name ordering. May also be column num-
bers. If length(neworder) < length(x), the specified columns are moved in
order to the "front" of x. By default, setcolorder without a specified neworder
moves the key columns in order to the "front" of x.

before, after If one of them (not both) was provided with a column name or number, neworder
will be inserted before or after that column.

setDF 103

Details

To reorder data.table columns, the idiomatic way is to use setcolorder(x, neworder), in-
stead of doing x <- x[, ..neworder] (or x <- x[, neworder, with=FALSE]). This is because the
latter makes an entire copy of the data.table, which maybe unnecessary in most situations.
setcolorder also allows column numbers instead of names for neworder argument, although we
recommend using names as a good programming practice.

Value

The input is modified by reference, and returned (invisibly) so it can be used in compound state-
ments. If you require a copy, take a copy first (using DT2 = copy(DT)). See ?copy.

See Also

setkey, setorder, setattr, setnames, set, :=, setDT, setDF, copy, getNumericRounding,
setNumericRounding

Examples

set.seed(45L)
DT = data.table(A=sample(3, 10, TRUE),

B=sample(letters[1:3], 10, TRUE), C=sample(10))

setcolorder(DT, c("C", "A", "B"))

#incomplete specification
setcolorder(DT, "A")

insert new column as first column
set(DT, j="D", value=sample(10))
setcolorder(DT, "D", before=1)

move column to last column place
setcolorder(DT, "A", after=ncol(DT))

setDF Coerce a data.table to data.frame by reference

Description

In data.table parlance, all set* functions change their input by reference. That is, no copy is
made at all, other than temporary working memory, which is as large as one column. The only
other data.table operator that modifies input by reference is :=. Check out the See Also section
below for other set* function data.table provides.

A helper function to convert a data.table or list of equal length to data.frame by reference.

Usage

setDF(x, rownames=NULL)

104 setDT

Arguments

x A data.table, data.frame or list of equal length.

rownames A character vector to assign as the row names of x.

Details

All data.table attributes including any keys and indices of the input data.table are stripped off.

When using rownames, recall that the row names of a data.frame must be unique. By default, the
assigned set of row names is simply the sequence 1, . . . , nrow(x) (or length(x) for lists).

Value

The input data.table is modified by reference to a data.frame and returned (invisibly). If you
require a copy, take a copy first (using DT2 = copy(DT)). See ?copy.

See Also

data.table, as.data.table, setDT, copy, setkey, setcolorder, setattr, setnames, set, :=,
setorder

Examples

X = data.table(x=1:5, y=6:10)
convert 'X' to data.frame, without any copy.
setDF(X)

X = data.table(x=1:5, y=6:10)
idem, assigning row names
setDF(X, rownames = LETTERS[1:5])

X = list(x=1:5, y=6:10)
X is converted to a data.frame without any copy.
setDF(X)

setDT Coerce lists and data.frames to data.table by reference

Description

In data.table parlance, all set* functions change their input by reference. That is, no copy is
made at all, other than temporary working memory, which is as large as one column.. The only
other data.table operator that modifies input by reference is :=. Check out the See Also section
below for other set* function data.table provides.

setDT converts lists (both named and unnamed) and data.frames to data.tables by reference. This
feature was requested on Stackoverflow.

https://stackoverflow.com/questions/20345022/convert-a-data-frame-to-a-data-table-without-copy

setDT 105

Usage

setDT(x, keep.rownames=FALSE, key=NULL, check.names=FALSE)

Arguments

x A named or unnamed list, data.frame or data.table.

keep.rownames For data.frames, TRUE retains the data.frame’s row names under a new col-
umn rn. keep.rownames = "id" names the column "id" instead.

key Character vector of one or more column names which is passed to setkeyv.

check.names Just as check.names in data.frame.

Details

When working on large lists or data.frames, it might be both time and memory consuming to
convert them to a data.table using as.data.table(.), as this will make a complete copy of the
input object before to convert it to a data.table. The setDT function takes care of this issue by
allowing to convert lists - both named and unnamed lists and data.frames by reference instead.
That is, the input object is modified in place, no copy is being made.

Value

The input is modified by reference, and returned (invisibly) so it can be used in compound state-
ments; e.g., setDT(X)[, sum(B), by=A]. If you require a copy, take a copy first (using DT2 =
copy(DT)). See ?copy.

See Also

data.table, as.data.table, setDF, copy, setkey, setcolorder, setattr, setnames, set, :=,
setorder

Examples

set.seed(45L)
X = data.frame(A=sample(3, 10, TRUE),

B=sample(letters[1:3], 10, TRUE),
C=sample(10), stringsAsFactors=FALSE)

Convert X to data.table by reference and
get the frequency of each "A,B" combination
setDT(X)[, .N, by=.(A,B)]

convert list to data.table
autofill names
X = list(1:4, letters[1:4])
setDT(X)
don't provide names
X = list(a=1:4, letters[1:4])
setDT(X, FALSE)

setkey directly

106 setDTthreads

X = list(a = 4:1, b=runif(4))
setDT(X, key="a")[]

check.names argument
X = list(a=1:5, a=6:10)
setDT(X, check.names=TRUE)[]

setDTthreads Set or get number of threads that data.table should use

Description

Set and get number of threads to be used in data.table functions that are parallelized with
OpenMP. The number of threads is initialized when data.table is first loaded in the R session
using optional environment variables. Thereafter, the number of threads may be changed by calling
setDTthreads. If you change an environment variable using Sys.setenv you will need to call
setDTthreads again to reread the environment variables.

Usage

setDTthreads(threads = NULL, restore_after_fork = NULL, percent = NULL, throttle = NULL)
getDTthreads(verbose = getOption("datatable.verbose"))

Arguments

threads NULL (default) rereads environment variables. 0 means to use all logical CPUs
available. Otherwise a number >= 1

restore_after_fork

Should data.table be multi-threaded after a fork has completed? NULL leaves
the current setting unchanged which by default is TRUE. See details below.

percent If provided it should be a number between 2 and 100; the percentage of logical
CPUs to use. By default on startup, 50%.

throttle 1024 (default) means that, roughly speaking, a single thread will be used when
nrow(DT)<=1024, 2 threads when nrow(DT)<=2048, etc. The throttle is to
speed up small data tasks (especially when repeated many times) by not incur-
ring the overhead of managing multiple threads. Hence the number of threads is
throttled (restricted) for small tasks.

verbose Display the value of relevant OpenMP settings plus the restore_after_fork
internal option.

Details

data.table automatically switches to single threaded mode upon fork (the mechanism used by
parallel::mclapply and the foreach package). Otherwise, nested parallelism would very likely
overload your CPUs and result in much slower execution. As data.table becomes more parallel
internally, we expect explicit user parallelism to be needed less often. The restore_after_fork

setDTthreads 107

option controls what happens after the explicit fork parallelism completes. It needs to be at C level
so it is not a regular R option using options(). By default data.table will be multi-threaded
again; restoring the prior setting of getDTthreads(). But problems have been reported in the
past on Mac with Intel OpenMP libraries whereas success has been reported on Linux. If you
experience problems after fork, start a new R session and change the default behaviour by calling
setDTthreads(restore_after_fork=FALSE) before retrying. Please raise issues on the data.table
GitHub issues page.

The number of logical CPUs is determined by the OpenMP function omp_get_num_procs() whose
meaning may vary across platforms and OpenMP implementations. setDTthreads() will not allow
more than this limit. Neither will it allow more than omp_get_thread_limit() nor the current
value of Sys.getenv("OMP_THREAD_LIMIT"). Note that CRAN’s daily test system (results for
data.table here) sets OMP_THREAD_LIMIT to 2 and should always be respected; e.g., if you have
written a package that uses data.table and your package is to be released on CRAN, you should not
change OMP_THREAD_LIMIT in your package to a value greater than 2.

Some hardware allows CPUs to be removed and/or replaced while the server is running. If this
happens, our understanding is that omp_get_num_procs() will reflect the new number of processors
available. But if this happens after data.table started, setDTthreads(...) will need to be called
again by you before data.table will reflect the change. If you have such hardware, please let us know
your experience via GitHub issues / feature requests.

Use getDTthreads(verbose=TRUE) to see the relevant environment variables, their values and the
current number of threads data.table is using. For example, the environment variable R_DATATABLE_NUM_PROCS_PERCENT
can be used to change the default number of logical CPUs from 50% to another value between 2
and 100. If you change these environment variables using ‘Sys.setenv()‘ after data.table and/or
OpenMP has initialized then you will need to call setDTthreads(threads=NULL) to reread their
current values. getDTthreads() merely retrieves the internal value that was set by the last call to
setDTthreads(). setDTthreads(threads=NULL) is called when data.table is first loaded and is
not called again unless you call it.

setDTthreads() affects data.table only and does not change R itself or other packages using
OpenMP. We have followed the advice of section 1.2.1.1 in the R-exts manual: ". . . or, better, for
the regions in your code as part of their specification. . . num_threads(nthreads). . . That way you only
control your own code and not that of other OpenMP users." Every parallel region in data.table
contain a num_threads(getDTthreads()) directive. This is mandated by a grep in data.table’s
quality control script.

setDTthreads(0) is the same as setDTthreads(percent=100); i.e. use all logical CPUs, sub-
ject to Sys.getenv("OMP_THREAD_LIMIT"). Please note again that CRAN’s daily test system sets
OMP_THREAD_LIMIT to 2, so developers of CRAN packages should never change OMP_THREAD_LIMIT
inside their package to a value greater than 2.

Internally parallelized code is used in the following places:

• ‘between.c’ - between()

• ‘cj.c’ - CJ()

• ‘coalesce.c’ - fcoalesce()

• ‘fifelse.c’ - fifelse()

• ‘fread.c’, ‘freadR.c’ - fread(). Parallelized across row-based chunks of the file.

• ‘forder.c’, ‘fsort.c’, and ‘reorder.c’ - forder() and related

https://cran.r-project.org/web/checks/check_results_data.table.html

108 setkey

• ‘froll.c’, ‘frolladaptive.c’, and ‘frollR.c’ - froll() and family

• ‘fwrite.c’ - fwrite(). Parallelized across rows.

• ‘gsumm.c’ - GForce in various places, see GForce. Parallelized across groups.

• ‘nafill.c’ - nafill()

• ‘subset.c’ - Used in [.data.table subsetting

• ‘types.c’ - Internal testing usage

We endeavor to keep this list up to date, but note that the canonical reference here is the source code
itself.

Value

A length 1 integer. The old value is returned by setDTthreads so you can store that prior value
and pass it to setDTthreads() again after the section of your code where you control the number
of threads.

Examples

getDTthreads(verbose=TRUE)

setkey Create key on a data.table

Description

setkey sorts a data.table and marks it as sorted with an attribute "sorted". The sorted columns
are the key. The key can be any number of columns. The data is always sorted in ascending order
with NAs (if any) always first. The table is changed by reference and there is no memory used for
the key (other than marking which columns the data is sorted by).

There are three reasons setkey is desirable:

• binary search and joins are faster when they detect they can use an existing key

• grouping by a leading subset of the key columns is faster because the groups are already
gathered contiguously in RAM

• simpler shorter syntax; e.g. DT["id",] finds the group "id" in the first column of DT’s key
using binary search. It may be helpful to think of a key as super-charged rownames: multi-
column and multi-type.

NAs are always first because:

• NA is internally INT_MIN (a large negative number) in R. Keys and indexes are always in in-
creasing order so if NAs are first, no special treatment or branch is needed in many data.table
internals involving binary search. It is not optional to place NAs last for speed, simplicity and
robustness of internals at C level.

• if any NAs are present then we believe it is better to display them up front (rather than hiding
them at the end) to reduce the risk of not realizing NAs are present.

setkey 109

In data.table parlance, all set* functions change their input by reference. That is, no copy is
made at all other than for temporary working memory, which is as large as one column. The only
other data.table operator that modifies input by reference is :=. Check out the See Also section
below for other set* functions data.table provides.

setindex creates an index for the provided columns. This index is simply an ordering vector
of the dataset’s rows according to the provided columns. This order vector is stored as an at-
tribute of the data.table and the dataset retains the original order of rows in memory. See the
vignette("datatable-secondary-indices-and-auto-indexing") for more details.

key returns the data.table’s key if it exists; NULL if none exists.

haskey returns TRUE/FALSE if the data.table has a key.

Usage

setkey(x, ..., verbose=getOption("datatable.verbose"), physical = TRUE)
setkeyv(x, cols, verbose=getOption("datatable.verbose"), physical = TRUE)
setindex(...)
setindexv(x, cols, verbose=getOption("datatable.verbose"))
key(x)
indices(x, vectors = FALSE)
haskey(x)

Arguments

x A data.table.

... The columns to sort by. Do not quote the column names. If ... is missing (i.e.
setkey(DT)), all the columns are used. NULL removes the key.

cols A character vector of column names. For setindexv, this can be a list of
character vectors, in which case each element will be applied as an index in
turn.

verbose Output status and information.

physical TRUE changes the order of the data in RAM. FALSE adds an index.

vectors logical scalar, default FALSE; when set to TRUE, a list of character vectors is
returned, each referring to one index.

Details

setkey reorders (i.e. sorts) the rows of a data.table by the columns provided. The sort method
used has developed over the years and we have contributed to base R too; see sort. Generally
speaking we avoid any type of comparison sort (other than insert sort for very small input) preferring
instead counting sort and forwards radix. We also avoid hash tables.

Note that setkey always uses "C-locale"; see the Details in the help for setorder for more on why.

The sort is stable; i.e., the order of ties (if any) is preserved.

For character vectors, data.table takes advantage of R’s internal global string cache, also exported
as chorder.

../doc/datatable-secondary-indices-and-auto-indexing.html

110 setkey

Value

The input is modified by reference and returned (invisibly) so it can be used in compound state-
ments; e.g., setkey(DT,a)[.("foo")]. If you require a copy, take a copy first (using DT2=copy(DT)).
copy may also sometimes be useful before := is used to subassign to a column by reference.

Good practice

In general, it’s good practice to use column names rather than numbers. This is why setkey and
setkeyv only accept column names. If you use column numbers then bugs (possibly silent) can
more easily creep into your code as time progresses if changes are made elsewhere in your code;
e.g., if you add, remove or reorder columns in a few months time, a setkey by column number will
then refer to a different column, possibly returning incorrect results with no warning. (A similar
concept exists in SQL, where "select * from ..." is considered poor programming style when a
robust, maintainable system is required.)

If you really wish to use column numbers, it is possible but deliberately a little harder; e.g.,
setkeyv(DT,names(DT)[1:2]).

If you want to subset rows based on values of an integer key column, it should be done with the dot
(.) syntax, because integers are otherwise interpreted as row numbers (see example).

If you wanted to use grep to select key columns according to a pattern, note that you can just set
value = TRUE to return a character vector instead of the default integer indices.

References

https://en.wikipedia.org/wiki/Radix_sort
https://en.wikipedia.org/wiki/Counting_sort
http://stereopsis.com/radix.html
https://codercorner.com/RadixSortRevisited.htm
https://cran.r-project.org/package=bit64
https://github.com/Rdatatable/data.table/wiki/Presentations

See Also

data.table, tables, J, sort.list, copy, setDT, setDF, set :=, setorder, setcolorder, setattr,
setnames, chorder, setNumericRounding

Examples

Type 'example(setkey)' to run these at the prompt and browse output

DT = data.table(A=5:1,B=letters[5:1])
DT # before
setkey(DT,B) # re-orders table and marks it sorted.
DT # after
tables() # KEY column reports the key'd columns
key(DT)
keycols = c("A","B")
setkeyv(DT,keycols)

DT = data.table(A=5:1,B=letters[5:1])

https://en.wikipedia.org/wiki/Radix_sort
https://en.wikipedia.org/wiki/Counting_sort
http://stereopsis.com/radix.html
https://codercorner.com/RadixSortRevisited.htm
https://cran.r-project.org/package=bit64
https://github.com/Rdatatable/data.table/wiki/Presentations

setNumericRounding 111

DT2 = DT # does not copy
setkey(DT2,B) # does not copy-on-write to DT2
identical(DT,DT2) # TRUE. DT and DT2 are two names for the same keyed table

DT = data.table(A=5:1,B=letters[5:1])
DT2 = copy(DT) # explicit copy() needed to copy a data.table
setkey(DT2,B) # now just changes DT2
identical(DT,DT2) # FALSE. DT and DT2 are now different tables

DT = data.table(A=5:1,B=letters[5:1])
setindex(DT) # set indices
setindex(DT, A)
setindex(DT, B)
indices(DT) # get indices single vector
indices(DT, vectors = TRUE) # get indices list

Use the dot .(subset_value) syntax with integer keys:
DT = data.table(id = 2:1)
setkey(DT, id)
subset_value <- 1
DT[subset_value] # treats subset_value as an row number
DT[.(subset_value)] # matches subset_value against key column (id)

setNumericRounding Change or turn off numeric rounding

Description

Change rounding to 0, 1 or 2 bytes when joining, grouping or ordering numeric (i.e. double,
POSIXct) columns.

Usage

setNumericRounding(x)
getNumericRounding()

Arguments

x integer or numeric vector: 0 (default), 1 or 2 byte rounding

Details

Computers cannot represent some floating point numbers (such as 0.6) precisely, using base 2. This
leads to unexpected behaviour when joining or grouping columns of type ’numeric’; i.e. ’double’,
see example below. In cases where this is undesirable, data.table allows rounding such data up
to approximately 11 significant figures which is plenty of digits for many cases. This is achieved
by rounding the last 2 bytes off the significand. Other possible values are 1 byte rounding, or no
rounding (full precision, default).

112 setops

It is bytes rather than bits because it is tied in with the radix sort algorithm for sorting numerics
which sorts byte by byte. With the default rounding of 0 bytes, at most 8 passes are needed. With
rounding of 2 bytes, at most 6 passes are needed (and therefore might be a tad faster).

For large numbers (integers > 2^31), we recommend using bit64::integer64, even though the
default is to round off 0 bytes (full precision).

Value

setNumericRounding returns no value; the new value is applied. getNumericRounding returns the
current value: 0, 1 or 2.

See Also

datatable-optimize
https://en.wikipedia.org/wiki/Double-precision_floating-point_format
https://en.wikipedia.org/wiki/Floating_point
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

Examples

DT = data.table(a=seq(0,1,by=0.2),b=1:2, key="a")
DT
setNumericRounding(0) # By default, rounding is turned off
DT[.(0.4)] # works
DT[.(0.6)] # no match, can be confusing since 0.6 is clearly there in DT

happens due to floating point representation limitations

setNumericRounding(2) # round off last 2 bytes
DT[.(0.6)] # works

using type 'numeric' for integers > 2^31 (typically ids)
DT = data.table(id = c(1234567890123, 1234567890124, 1234567890125), val=1:3)
print(DT, digits=15)
DT[,.N,by=id] # 1 row, (last 2 bytes rounded)
setNumericRounding(0)
DT[,.N,by=id] # 3 rows, (no rounding, default)
better to use bit64::integer64 for such ids

setops Set operations for data tables

Description

Similar to base R set functions, union, intersect, setdiff and setequal but for data.tables.
Additional all argument controls how duplicated rows are handled. Functions fintersect, setdiff
(MINUS or EXCEPT in SQL) and funion are meant to provide functionality of corresponding SQL
operators. Unlike SQL, data.table functions will retain row order.

https://en.wikipedia.org/wiki/Double-precision_floating-point_format
https://en.wikipedia.org/wiki/Floating_point
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

setops 113

Usage

fintersect(x, y, all = FALSE)
fsetdiff(x, y, all = FALSE)
funion(x, y, all = FALSE)
fsetequal(x, y, all = TRUE)

Arguments

x, y data.tables.

all Logical. Default is FALSE and removes duplicate rows on the result. When TRUE,
if there are xn copies of a particular row in x and yn copies of the same row in
y, then:

• fintersect will return min(xn, yn) copies of that row.
• fsetdiff will return max(0, xn-yn) copies of that row.
• funion will return xn+yn copies of that row.
• fsetequal will return FALSE unless xn == yn.

Details

bit64::integer64 columns are supported but not complex and list, except for funion.

Value

A data.table in case of fintersect, funion and fsetdiff. Logical TRUE or FALSE for fsetequal.

References

https://db.apache.org/derby/papers/Intersect-design.html

See Also

data.table, rbindlist, all.equal.data.table, unique, duplicated, uniqueN, anyDuplicated

Examples

x = data.table(c(1,2,2,2,3,4,4))
x2 = data.table(c(1,2,3,4)) # same set of rows as x
y = data.table(c(2,3,4,4,4,5))
fintersect(x, y) # intersect
fintersect(x, y, all=TRUE) # intersect all
fsetdiff(x, y) # except
fsetdiff(x, y, all=TRUE) # except all
funion(x, y) # union
funion(x, y, all=TRUE) # union all
fsetequal(x, x2, all=FALSE) # setequal
fsetequal(x, x2) # setequal all

https://db.apache.org/derby/papers/Intersect-design.html

114 setorder

setorder Fast row reordering of a data.table by reference

Description

In data.table parlance, all set* functions change their input by reference. That is, no copy is
made at all, other than temporary working memory, which is as large as one column. The only
other data.table operator that modifies input by reference is :=. Check out the See Also section
below for other set* function data.table provides.

setorder (and setorderv) reorders the rows of a data.table based on the columns (and column
order) provided. It reorders the table by reference and is therefore very memory efficient.

Note that queries like x[order(.)] are optimised internally to use data.table’s fast order.

Also note that data.table always reorders in "C-locale" (see Details). To sort by session locale,
use x[base::order(.)].

bit64::integer64 type is also supported for reordering rows of a data.table.

Usage

setorder(x, ..., na.last=FALSE)
setorderv(x, cols = colnames(x), order=1L, na.last=FALSE)
optimised to use data.table's internal fast order
x[order(., na.last=TRUE)]
x[order(., decreasing=TRUE)]

Arguments

x A data.table.

... The columns to sort by. Do not quote column names. If ... is missing (ex:
setorder(x)), x is rearranged based on all columns in ascending order by de-
fault. To sort by a column in descending order prefix the symbol "-" which
means "descending" (not "negative", in this context), i.e., setorder(x, a, -b,
c). The -b works when b is of type character as well.

cols A character vector of column names of x by which to order. By default, sorts
over all columns; cols = NULL will return x untouched. Do not add "-" here.
Use order argument instead.

order An integer vector with only possible values of 1 and -1, corresponding to as-
cending and descending order. The length of order must be either 1 or equal to
that of cols. If length(order) == 1, it is recycled to length(cols).

na.last logical. If TRUE, missing values in the data are placed last; if FALSE, they are
placed first; if NA they are removed. na.last=NA is valid only for x[order(.,
na.last)] and its default is TRUE. setorder and setorderv only accept TRUE/FALSE
with default FALSE.

setorder 115

Details

data.table implements its own fast radix-based ordering. See the references for some exposition
on the concept of radix sort.

setorder accepts unquoted column names (with names preceded with a - sign for descending or-
der) and reorders data.table rows by reference, for e.g., setorder(x, a, -b, c). We emphasize
that this means "descending" and not "negative" because the implementation simply reverses the
sort order, as opposed to sorting the opposite of the input (which would be inefficient).

Note that -b also works with columns of type character unlike order, which requires -xtfrm(y)
instead (which is slow). setorderv in turn accepts a character vector of column names and an
integer vector of column order separately.

Note that setkey still requires and will always sort only in ascending order, and is different from
setorder in that it additionally sets the sorted attribute.

na.last argument, by default, is FALSE for setorder and setorderv to be consistent with data.table’s
setkey and is TRUE for x[order(.)] to be consistent with base::order. Only x[order(.)] can
have na.last = NA as it is a subset operation as opposed to setorder or setorderv which reorders
the data.table by reference.

data.table always reorders in "C-locale". As a consequence, the ordering may be different to that
obtained by base::order. In English locales, for example, sorting is case-sensitive in C-locale.
Thus, sorting c("c", "a", "B") returns c("B", "a", "c") in data.table but c("a", "B", "c")
in base::order. Note this makes no difference in most cases of data; both return identical results on
ids where only upper-case or lower-case letters are present ("AB123" < "AC234" is true in both), or
on country names and other proper nouns which are consistently capitalized. For example, neither
"America" < "Brazil" nor "america" < "brazil" are affected since the first letter is consistently
capitalized.

Using C-locale makes the behaviour of sorting in data.table more consistent across sessions
and locales. The behaviour of base::order depends on assumptions about the locale of the R
session. In English locales, "america" < "BRAZIL" is true by default but false if you either type
Sys.setlocale(locale="C") or the R session has been started in a C locale for you – which can
happen on servers/services since the locale comes from the environment the R session was started
in. By contrast, "america" < "BRAZIL" is always FALSE in data.table regardless of the way your
R session was started.

If setorder results in reordering of the rows of a keyed data.table, then its key will be set to
NULL.

Value

The input is modified by reference, and returned (invisibly) so it can be used in compound state-
ments; e.g., setorder(DT,a,-b)[, cumsum(c), by=list(a,b)]. If you require a copy, take a
copy first (using DT2 = copy(DT)). See copy.

References

https://en.wikipedia.org/wiki/Radix_sort
https://en.wikipedia.org/wiki/Counting_sort
http://stereopsis.com/radix.html
https://codercorner.com/RadixSortRevisited.htm
https://medium.com/basecs/getting-to-the-root-of-sorting-with-radix-sort-f8e9240d4224

https://en.wikipedia.org/wiki/Radix_sort
https://en.wikipedia.org/wiki/Counting_sort
http://stereopsis.com/radix.html
https://codercorner.com/RadixSortRevisited.htm
https://medium.com/basecs/getting-to-the-root-of-sorting-with-radix-sort-f8e9240d4224

116 shift

See Also

setkey, setcolorder, setattr, setnames, set, :=, setDT, setDF, copy, setNumericRounding

Examples

set.seed(45L)
DT = data.table(A=sample(3, 10, TRUE),

B=sample(letters[1:3], 10, TRUE), C=sample(10))

setorder
setorder(DT, A, -B)

same as above, but using setorderv
setorderv(DT, c("A", "B"), c(1, -1))

shift Fast lead/lag for vectors and lists

Description

lead or lag vectors, lists, data.frames or data.tables implemented in C for speed.

bit64::integer64 is also supported.

Usage

shift(x, n=1L, fill, type=c("lag", "lead", "shift", "cyclic"), give.names=FALSE)

Arguments

x A vector, list, data.frame or data.table.

n integer vector denoting the offset by which to lead or lag the input. To create
multiple lead/lag vectors, provide multiple values to n; negative values of n will
"flip" the value of type, i.e., n=-1 and type='lead' is the same as n=1 and
type='lag'.

fill default is NA. Value to use for padding when the window goes beyond the input
length.

type default is "lag" (look "backwards"). The other possible values "lead" (look
"forwards"), "shift" (behave same as "lag" except given names) and "cyclic"
where pushed out values are re-introduced at the front/back.

give.names default is FALSE which returns an unnamed list. When TRUE, names are auto-
matically generated corresponding to type and n. If answer is an atomic vector,
then the argument is ignored.

shift 117

Details

shift accepts vectors, lists, data.frames or data.tables. It always returns a list except when the
input is a vector and length(n) == 1 in which case a vector is returned, for convenience. This
is so that it can be used conveniently within data.table’s syntax. For example, DT[, (cols) :=
shift(.SD, 1L), by=id] would lag every column of .SD by 1 for each group and DT[, newcol :=
colA + shift(colB)] would assign the sum of two vectors to newcol.

Argument n allows multiple values. For example, DT[, (cols) := shift(.SD, 1:2), by=id]
would lag every column of .SD by 1 and 2 for each group. If .SD contained four columns, the
first two elements of the list would correspond to lag=1 and lag=2 for the first column of .SD, the
next two for second column of .SD and so on. Please see examples for more.

shift is designed mainly for use in data.tables along with := or set. Therefore, it returns an un-
named list by default as assigning names for each group over and over can be quite time consuming
with many groups. It may be useful to set names automatically in other cases, which can be done
by setting give.names to TRUE.

Note that when using shift with a list, it should be a list of lists rather than a flattened list. The
function was not designed to handle flattened lists directly. This also applies to the use of list
columns in a data.table. For example, DT = data.table(x=as.list(1:4)) is a data.table with
four rows. Applying DT[, shift(x)] now lags every entry individually, rather than shifting the
full columns like DT[, shift(as.integer(x))] does. Using DT = data.table(x=list(1:4))
creates a data.table with one row. Now DT[, shift(x)] returns a data.table with four rows where
x is lagged. To get a shifted data.table with the same number of rows, wrap the shift function in
list or dot, e.g., DT[, .(shift(x))].

Value

A list containing the lead/lag of input x.

See Also

data.table

Examples

on vectors, returns a vector as long as length(n) == 1, #1127
x = 1:5
lag with n=1 and pad with NA (returns vector)
shift(x, n=1, fill=NA, type="lag")
lag with n=1 and 2, and pad with 0 (returns list)
shift(x, n=1:2, fill=0, type="lag")
getting a window by using positive and negative n:
shift(x, n = -1:1)
shift(x, n = -1:1, type = "shift", give.names = TRUE)
cyclic shift where pad uses pushed out values
shift(x, n = -1:1, type = "cyclic")

on data.tables
DT = data.table(year=2010:2014, v1=runif(5), v2=1:5, v3=letters[1:5])
lag columns 'v1,v2,v3' DT by 1 and fill with 0
cols = c("v1","v2","v3")

118 shouldPrint

anscols = paste("lead", cols, sep="_")
DT[, (anscols) := shift(.SD, 1, 0, "lead"), .SDcols=cols]

return a new data.table instead of updating
with names automatically set
DT = data.table(year=2010:2014, v1=runif(5), v2=1:5, v3=letters[1:5])
DT[, shift(.SD, 1:2, NA, "lead", TRUE), .SDcols=2:4]

lag/lead in the right order
DT = data.table(year=2010:2014, v1=runif(5), v2=1:5, v3=letters[1:5])
DT = DT[sample(nrow(DT))]
add lag=1 for columns 'v1,v2,v3' in increasing order of 'year'
cols = c("v1","v2","v3")
anscols = paste("lag", cols, sep="_")
DT[order(year), (cols) := shift(.SD, 1, type="lag"), .SDcols=cols]
DT[order(year)]

while grouping
DT = data.table(year=rep(2010:2011, each=3), v1=1:6)
DT[, c("lag1", "lag2") := shift(.SD, 1:2), by=year]

on lists
ll = list(1:3, letters[4:1], runif(2))
shift(ll, 1, type="lead")
shift(ll, 1, type="lead", give.names=TRUE)
shift(ll, 1:2, type="lead")

fill using first or last by group
DT = data.table(x=1:6, g=rep(1:2, each=3))
DT[, shift(x, fill=x[1L]), by=g]
DT[, shift(x, fill=x[.N], type="lead"), by=g]

shouldPrint For use by packages that mimic/divert auto printing e.g. IRkernel and
knitr

Description

Not for use by users. Exported only for use by IRkernel (Jupyter) and knitr.

Usage

shouldPrint(x)

Arguments

x A data.table.

special-symbols 119

Details

Should IRkernel/Jupyter print a data.table returned invisibly by DT[,:=] ? This is a read-once func-
tion since it resets an internal flag. If you need the value more than once in your logic, store the
value from the first call.

Value

TRUE or FALSE.

References

https://github.com/IRkernel/IRkernel/issues/127
https://github.com/Rdatatable/data.table/issues/933

Examples

dummy example section to pass release check that all .Rd files have examples

special-symbols Special symbols

Description

.SD, .BY, .N, .I, .GRP, and .NGRP are read-only symbols for use in j. .N can be used in i as well. .I
can be used in by as well. See the vignettes, Details and Examples here and in data.table. .EACHI
is a symbol passed to by; i.e. by=.EACHI, .NATURAL is a symbol passed to on; i.e. on=.NATURAL

Details

The bindings of these variables are locked and attempting to assign to them will generate an error.
If you wish to manipulate .SD before returning it, take a copy(.SD) first (see FAQ 4.5). Using :=
in the j of .SD is reserved for future use as a (tortuously) flexible way to update DT by reference by
group (even when groups are not contiguous in an ad hoc by).

These symbols used in j are defined as follows.

• .SD is a data.table containing the Subset of x’s Data for each group, excluding any columns
used in by (or keyby).

• .BY is a list containing a length 1 vector for each item in by. This can be useful when by is
not known in advance. The by variables are also available to j directly by name; useful for
example for titles of graphs if j is a plot command, or to branch with if() depending on the
value of a group variable.

• .N is an integer, length 1, containing the number of rows in the group. This may be useful
when the column names are not known in advance and for convenience generally. When
grouping by i, .N is the number of rows in x matched to, for each row of i, regardless of
whether nomatch is NA or NULL. It is renamed to N (no dot) in the result (otherwise a column
called ".N" could conflict with the .N variable, see FAQ 4.6 for more details and example),
unless it is explicitly named; e.g., DT[,list(total=.N),by=a].

https://github.com/IRkernel/IRkernel/issues/127
https://github.com/Rdatatable/data.table/issues/933

120 special-symbols

• .I is an integer vector equal to seq_len(nrow(x)). While grouping, it holds for each item in
the group, its row location in x. This is useful to subset in j; e.g. DT[, .I[which.max(somecol)],
by=grp]. If used in by it corresponds to applying a function rowwise.

• .GRP is an integer, length 1, containing a simple group counter. 1 for the 1st group, 2 for the
2nd, etc.

• .NGRP is an integer, length 1, containing the number of groups.

.EACHI is defined as NULL but its value is not used. Its usage is by=.EACHI (or keyby=.EACHI)
which invokes grouping-by-each-row-of-i; see data.table’s by argument for more details.

.NATURAL is defined as NULL but its value is not used. Its usage is on=.NATURAL (alternative of
X[on=Y]) which joins two tables on their common column names, performing a natural join; see
data.table’s on argument for more details.

Note that .N in i is computed up-front, while that in j applies after filtering in i. That means that
even absent grouping, .N in i can be different from .N in j. See Examples.

Note also that you should consider these symbols read-only and of limited scope – internal data.table
code might manipulate them in unexpected ways, and as such their bindings are locked. There are
subtle ways to wind up with the wrong object, especially when attempting to copy their values
outside a grouping context. See examples; when in doubt, copy() is your friend.

See Also

data.table, :=, set, datatable-optimize

Examples

DT = data.table(x=rep(c("b","a","c"),each=3), v=c(1,1,1,2,2,1,1,2,2), y=c(1,3,6), a=1:9, b=9:1)
DT
X = data.table(x=c("c","b"), v=8:7, foo=c(4,2))
X

DT[.N] # last row, only special symbol allowed in 'i'
DT[, .N] # total number of rows in DT
DT[, .N, by=x] # number of rows in each group
DT[, .SD, .SDcols=x:y] # select columns 'x' through 'y'
DT[, .SD[1]] # first row of all columns
DT[, .SD[1], by=x] # first row of all columns for each group in 'x'
DT[, c(.N, lapply(.SD, sum)), by=x] # get rows *and* sum all columns by group
DT[, .I[1], by=x] # row number in DT corresponding to each group
DT[, .N, by=rleid(v)] # get count of consecutive runs of 'v'
DT[, c(.(y=max(y)), lapply(.SD, min)),

by=rleid(v), .SDcols=v:b] # compute 'j' for each consecutive runs of 'v'
DT[, grp := .GRP, by=x] # add a group counter
DT[, grp_pct := .GRP/.NGRP, by=x] # add a group "progress" counter
X[, DT[.BY, y, on="x"], by=x] # join within each group
DT[X, on=.NATURAL] # join X and DT on common column similar to X[on=Y]

.N can be different in i and j
DT[{cat(sprintf('in i, .N is %d\n', .N)); a < .N/2},

{cat(sprintf('in j, .N is %d\n', .N)); mean(a)}]

split 121

.I can be different in j and by, enabling rowwise operations in by
DT[, .(.I, min(.SD[,-1]))]
DT[, .(min(.SD[,-1])), by=.I]

Do not expect this to correctly append the value of .BY in each group; copy(.BY) will work.
by_tracker = list()
DT[, { append(by_tracker, .BY); sum(v) }, by=x]

split Split data.table into chunks in a list

Description

Split method for data.table. Faster and more flexible. Be aware that processing list of data.tables
will be generally much slower than manipulation in single data.table by group using by argument,
read more on data.table.

Usage

S3 method for class 'data.table'
split(x, f, drop = FALSE,

by, sorted = FALSE, keep.by = TRUE, flatten = TRUE,
..., verbose = getOption("datatable.verbose"))

Arguments

x data.table

f Same as split.data.frame. Use by argument instead, this is just for consis-
tency with data.frame method.

drop logical. Default FALSE will not drop empty list elements caused by factor levels
not referred by that factors. Works also with new arguments of split data.table
method.

by character vector. Column names on which split should be made. For length(by)
> 1L and flatten FALSE it will result nested lists with data.tables on leafs.

sorted When default FALSE it will retain the order of groups we are splitting on. When
TRUE then sorted list(s) are returned. Does not have effect for f argument.

keep.by logical default TRUE. Keep column provided to by argument.

flatten logical default TRUE will unlist nested lists of data.tables. When using f results
are always flattened to list of data.tables.

... When using f, passed to split.data.frame. When using by, sep is recognized
as with the default method.

verbose logical default FALSE. When TRUE it will print to console data.table split query
used to split data.

122 split

Details

Argument f is just for consistency in usage to data.frame method. Recommended is to use by
argument instead, it will be faster, more flexible, and by default will preserve order according to
order in data.

Value

List of data.tables. If using flatten FALSE and length(by) > 1L then recursively nested lists
having data.tables as leafs of grouping according to by argument.

See Also

data.table, rbindlist

Examples

set.seed(123)
DT = data.table(x1 = rep(letters[1:2], 6),

x2 = rep(letters[3:5], 4),
x3 = rep(letters[5:8], 3),
y = rnorm(12))

DT = DT[sample(.N)]
DF = as.data.frame(DT)

split consistency with data.frame: `x, f, drop`
all.equal(

split(DT, list(DT$x1, DT$x2)),
lapply(split(DF, list(DF$x1, DF$x2)), setDT)

)

nested list using `flatten` arguments
split(DT, by=c("x1", "x2"))
split(DT, by=c("x1", "x2"), flatten=FALSE)

dealing with factors
fdt = DT[, c(lapply(.SD, as.factor), list(y=y)), .SDcols=x1:x3]
fdf = as.data.frame(fdt)
sdf = split(fdf, list(fdf$x1, fdf$x2))
all.equal(

split(fdt, by=c("x1", "x2"), sorted=TRUE),
lapply(sdf[sort(names(sdf))], setDT)

)

factors having unused levels, drop FALSE, TRUE
fdt = DT[, .(x1 = as.factor(c(as.character(x1), "c"))[-13L],

x2 = as.factor(c("a", as.character(x2)))[-1L],
x3 = as.factor(c("a", as.character(x3), "z"))[c(-1L,-14L)],
y = y)]

fdf = as.data.frame(fdt)
sdf = split(fdf, list(fdf$x1, fdf$x2))
all.equal(

split(fdt, by=c("x1", "x2"), sorted=TRUE),

subset.data.table 123

lapply(sdf[sort(names(sdf))], setDT)
)
sdf = split(fdf, list(fdf$x1, fdf$x2), drop=TRUE)
all.equal(

split(fdt, by=c("x1", "x2"), sorted=TRUE, drop=TRUE),
lapply(sdf[sort(names(sdf))], setDT)

)

subset.data.table Subsetting data.tables

Description

Returns subsets of a data.table.

Usage

S3 method for class 'data.table'
subset(x, subset, select, ...)

Arguments

x data.table to subset.

subset logical expression indicating elements or rows to keep

select expression indicating columns to select from data.table

... further arguments to be passed to or from other methods

Details

The subset argument works on the rows and will be evaluated in the data.table so columns can
be referred to (by name) as variables in the expression.

The data.table that is returned will maintain the original keys as long as they are not select-ed
out.

Value

A data.table containing the subset of rows and columns that are selected.

See Also

subset

124 substitute2

Examples

DT <- data.table(a=sample(c('a', 'b', 'c'), 20, replace=TRUE),
b=sample(c('a', 'b', 'c'), 20, replace=TRUE),
c=sample(20), key=c('a', 'b'))

sub <- subset(DT, a == 'a')
all.equal(key(sub), key(DT))

substitute2 Substitute expression

Description

Experimental, more robust, and more user-friendly version of base R substitute.

Usage

substitute2(expr, env)

Arguments

expr Unevaluated expression in which substitution has to take place.

env List, or an environment that will be coerced to list, from which variables will be
taken to inject into expr.

Details

For convenience function will turn any character elements of env argument into symbols. In case
if character is of length 2 or more, it will raise an error. It will also turn any list elements into list
calls instead. Behaviour can be changed by wrapping env into I call. In such case any symbols
must be explicitly created, for example using as.name function. Alternatively it is possible to wrap
particular elements of env into I call, then only those elements will retain their original class.

Comparing to base R substitute, substitute2 function:

1. substitutes calls argument names as well

2. by default converts character elements of env argument to symbols

3. by default converts list elements of env argument to list calls

4. does not accept missing env argument

5. evaluates elements of env argument

Value

Quoted expression having variables and call argument names substituted.

substitute2 125

Note

Conversion of character to symbol and list to list call works recursively for each list element in env
list. If this behaviour is not desired for your use case, we would like to hear about that via our issue
tracker. For the present moment there is an option to disable that: options(datatable.enlist=FALSE).
This option is provided only for debugging and will be removed in future. Please do not write code
that depends on it, but use I calls instead.

See Also

substitute, I, call, name, eval

Examples

base R substitute vs substitute2
substitute(list(var1 = var2), list(var1 = "c1", var2 = 5L))
substitute2(list(var1 = var2), list(var1 = "c1", var2 = 5L)) ## works also on names

substitute(var1, list(var1 = "c1"))
substitute2(var1, list(var1 = I("c1"))) ## enforce character with I

substitute(var1, list(var1 = as.name("c1")))
substitute2(var1, list(var1 = "c1")) ## turn character into symbol, for convenience

mix symbols and characters using 'I' function, both lines will yield same result
substitute2(list(var1 = var2), list(var1 = "c1", var2 = I("some_character")))
substitute2(list(var1 = var2), I(list(var1 = as.name("c1"), var2 = "some_character")))

list elements are enlist'ed into list calls
(cl1 = substitute(f(lst), list(lst = list(1L, 2L))))
(cl2 = substitute2(f(lst), I(list(lst = list(1L, 2L)))))
(cl3 = substitute2(f(lst), list(lst = I(list(1L, 2L)))))
(cl4 = substitute2(f(lst), list(lst = quote(list(1L, 2L)))))
(cl5 = substitute2(f(lst), list(lst = list(1L, 2L))))
cl1[[2L]] ## base R substitute with list element
cl2[[2L]] ## same
cl3[[2L]] ## same
cl4[[2L]] ## desired
cl5[[2L]] ## automatically

character to name and list into list calls works recursively
(cl1 = substitute2(f(lst), list(lst = list(1L, list(2L)))))
(cl2 = substitute2(f(lst), I(list(lst = list(1L, list(2L)))))) ## unless I() used
last(cl1[[2L]]) ## enlisted recursively
last(cl2[[2L]]) ## AsIs

using substitute2 from another function
f = function(expr, env) {

eval(substitute(
substitute2(.expr, env),
list(.expr = substitute(expr))

))
}

126 tables

f(list(var1 = var2), list(var1 = "c1", var2 = 5L))

tables Display ’data.table’ metadata

Description

Convenience function for concisely summarizing some metadata of all data.tables in memory (or
an optionally specified environment).

Usage

tables(mb=type_size, order.col="NAME", width=80,
env=parent.frame(), silent=FALSE, index=FALSE)

Arguments

mb a function which accepts a data.table and returns its size in bytes. By default,
type_size (same as TRUE) provides a fast lower bound by excluding the size
of character strings in R’s global cache (which may be shared) and excluding
the size of list column items (which also may be shared). A column "MB" is
included in the output unless FALSE or NULL.

order.col Column name (character) by which to sort the output.

width integer; number of characters beyond which the output for each of the columns
COLS, KEY, and INDICES are truncated.

env An environment, typically the .GlobalEnv by default, see Details.

silent logical; should the output be printed?

index logical; if TRUE, the column INDICES is added to indicate the indices assorted
with each object, see indices.

Details

Usually tables() is executed at the prompt, where parent.frame() returns .GlobalEnv. tables()
may also be useful inside functions where parent.frame() is the local scope of the function; in
such a scenario, simply set it to .GlobalEnv to get the same behaviour as at prompt.

‘mb = utils::object.size‘ provides a higher and more accurate estimate of size, but may take longer.
Its default ‘units="b"‘ is appropriate.

Setting silent=TRUE prints nothing; the metadata is returned as a data.table invisibly whether
silent is TRUE or FALSE.

Value

A data.table containing the information printed.

test 127

See Also

data.table, setkey, ls, objects, object.size

Examples

DT = data.table(A=1:10, B=letters[1:10])
DT2 = data.table(A=1:10000, ColB=10000:1)
setkey(DT,B)
tables()

test Test assertions for equality, exceptions and console output

Description

An internal testing function used in data.table test scripts that are run by test.data.table.

Usage

test(num, x, y = TRUE,
error = NULL, warning = NULL, message = NULL,
output = NULL, notOutput = NULL, ignore.warning = NULL,
options = NULL, env = NULL)

Arguments

num A unique identifier for a test, helpful in identifying the source of failure when
testing is not working. Currently, we use a manually-incremented system with
tests formatted as n.m, where essentially n indexes an issue and m indexes as-
pects of that issue. For the most part, your new PR should only have one value
of n (scroll to the end of inst/tests/tests.Rraw to see the next available ID)
and then index the tests within your PR by increasing m. Note – n.m is inter-
preted as a number, so 123.4 and 123.40 are actually the same – please 0-pad
as appropriate. Test identifiers are checked to be in increasing order at runtime
to prevent duplicates being possible.

x An input expression to be evaluated.

y Pre-defined value to compare to x, by default TRUE.

error When you are testing behaviour of code that you expect to fail with an error,
supply the expected error message to this argument. It is interpreted as a regular
expression, so you can be abbreviated, but try to include the key portion of the
error so as not to accidentally include a different error message.

warning Same as error, in the case that you expect your code to issue a warning. Note
that since the code evaluates successfully, you should still supply y.

message Same as warning but expects message exception.

128 test

output If you are testing the printing/console output behaviour; e.g. with verbose=TRUE
or options(datatable.verbose=TRUE). Again, regex-compatible and case sen-
sitive.

notOutput Or if you are testing that a feature does not print particular console output. Case
insensitive (unlike output) so that the test does not incorrectly pass just because
the string is not found due to case.

ignore.warning A single character string. Any warnings emitted by x that contain this string are
dropped. Remaining warnings are compared to the expected warning as normal.

options A named list of options to set for the duration of the test. Any code evaluated
during this call to ‘test()‘ (usually, ‘x‘, or maybe ‘y‘) will run with the named
options set, and the original options will be restored on return. This is a named
list since different options can have different types in general, but in typical
usage, only one option is set at a time, in which case a named vector is also
accepted.

env A named list of environment variables to set for the duration of the test, much
like options. A list entry set to NULL will unset (i.e., Sys.unsetenv) the corre-
sponding variable.

Value

Logical TRUE when test passes, FALSE when test fails. Invisibly.

Note

NA_real_ and NaN are treated as equal, use identical if distinction is needed. See examples below.

If warning= is not supplied then you are automatically asserting no warning is expected; the test
will fail if any warning does occur. Similarly for message=.

Multiple warnings are supported; supply a vector of strings to warning=. If x does not produce the
correct number of warnings in the correct order, the test will fail.

Strings passed to notOutput= should be minimal; e.g. pick out single words from the output
that you desire to check does not occur. The reason being so that the test does not incorrectly
pass just because the output has slightly changed. For example notOutput="revised" is better
than notOutput="revised flag to true". notOutput= is automatically case insensitive for this
reason.

See Also

test.data.table

Examples

test = data.table:::test
test(1, x = sum(1:5), y = 15L)
test(2, log(-1), NaN, warning="NaNs")
test(3, sum("a"), error="invalid.*character")
test failure example
stopifnot(

test(4, TRUE, FALSE) == FALSE

test.data.table 129

)
NA_real_ vs NaN
test(5.01, NA_real_, NaN)
test(5.03, all.equal(NaN, NA_real_))
test(5.02, identical(NaN, NA_real_), FALSE)

test.data.table Runs a set of tests.

Description

Runs a set of tests to check data.table is working correctly.

Usage

test.data.table(script = "tests.Rraw", verbose = FALSE, pkg = ".",
silent = FALSE,
showProgress = interactive() && !silent,
testPattern = NULL,
memtest = Sys.getenv("TEST_DATA_TABLE_MEMTEST", 0),
memtest.id = NULL)

Arguments

script Run arbitrary R test script.

verbose TRUE sets options(datatable.verbose=TRUE) for the duration of the tests.
This tests there are no errors in the branches that produce the verbose output,
and produces a lot of output. The output is normally used for tracing bugs or
performance tuning. Tests which specifically test the verbose output is correct
(typically looking for an expected substring) always run regardless of this op-
tion.

pkg Root directory name under which all package content (ex: DESCRIPTION, src/,
R/, inst/ etc..) resides. Used only in dev-mode.

silent Controls what happens if a test fails. Like silent in try, TRUE causes the
error message to be suppressed and FALSE to be returned, otherwise the error is
returned.

showProgress Output ’Running test <n> ...\r’ at the start of each test?

testPattern When present, a regular expression tested against the number of each test for
inclusion. Useful for running only a small portion of a large test script.

memtest Measure and report memory usage of tests (1:gc before ps, 2:gc after ps) rather
than time taken (0) by default. Intended for and tested on Linux. See PR #5515
for more details.

memtest.id An id for which to print memory usage for every sub id. May be a range of ids.

130 timetaken

Details

Runs a series of tests. These can be used to see features and examples of usage, too. Running
test.data.table will tell you the full location of the test file(s) to open.

Setting silent=TRUE sets showProgress=FALSE too, via the default of showProgress.

Value

If all tests were successful, TRUE is returned. Otherwise, see the silent argument above. silent=TRUE
is intended for use at the start of production scripts; e.g. stopifnot(test.data.table(silent=TRUE))
to check data.table is passing its own tests before proceeding.

See Also

data.table, test

Examples

Not run:
test.data.table()

End(Not run)

timetaken Pretty print of time taken

Description

Pretty print of time taken since last started.at.

Usage

timetaken(started.at)

Arguments

started.at The result of proc.time() taken some time earlier.

Value

A character vector of the form HH:MM:SS, or SS.MMMsec if under 60 seconds.

Examples

started.at=proc.time()
Sys.sleep(1)
cat("Finished in",timetaken(started.at),"\n")

transpose 131

transpose Efficient transpose of list

Description

transpose is an efficient way to transpose lists, data.frames or data.tables.

Usage

transpose(l, fill=NA, ignore.empty=FALSE, keep.names=NULL,
make.names=NULL, list.cols=FALSE)

Arguments

l A list, data.frame or data.table.

fill Default is NA. It is used to fill shorter list elements so as to return each element
of the transposed result of equal lengths.

ignore.empty Default is FALSE. TRUE will ignore length-0 list elements.

keep.names The name of the first column in the result containing the names of the input; e.g.
keep.names="rn". By default NULL and the names of the input are discarded.

make.names The name or number of a column in the input to use as names of the output; e.g.
make.names="rn". By default NULL and default names are given to the output
columns.

list.cols Default is FALSE. TRUE will avoid promoting types and return columns of type
list instead. factor will always be cast to character.

Details

The list elements (or columns of data.frame/data.table) should be all atomic. If list elements
are of unequal lengths, the value provided in fill will be used so that the resulting list always has
all elements of identical lengths. The class of input object is also preserved in the transposed result.

The ignore.empty argument can be used to skip or include length-0 elements.

This is particularly useful in tasks that require splitting a character column and assigning each part to
a separate column. This operation is quite common enough that a function tstrsplit is exported.

factor columns are converted to character type. Attributes are not preserved at the moment. This
may change in the future.

Value

A transposed list, data.frame or data.table.

list outputs will only be named according to make.names.

See Also

data.table, tstrsplit

132 truelength

Examples

ll = list(1:5, 6:8)
transpose(ll)
setDT(transpose(ll, fill=0))[]

DT = data.table(x=1:5, y=6:10)
transpose(DT)

DT = data.table(x=1:3, y=c("a","b","c"))
transpose(DT, list.cols=TRUE)

base R equivalent of transpose
l = list(1:3, c("a", "b", "c"))
lapply(seq(length(l[[1]])), function(x) lapply(l, `[[`, x))
transpose(l, list.cols=TRUE)

ll = list(nm=c('x', 'y'), 1:2, 3:4)
transpose(ll, make.names="nm")

truelength Over-allocation access

Description

These functions are experimental and somewhat advanced. By experimental we mean their names
might change and perhaps the syntax, argument names and types. So if you write a lot of code
using them, you have been warned! They should work and be stable, though, so please report prob-
lems with them. alloc.col is just an alias to setalloccol. We recommend to use setalloccol
(though alloc.col will continue to be supported) because the set* prefix in setalloccol makes
it clear that its input argument is modified in-place.

Usage

truelength(x)
setalloccol(DT,

n = getOption("datatable.alloccol"), # default: 1024L
verbose = getOption("datatable.verbose")) # default: FALSE

alloc.col(DT,
n = getOption("datatable.alloccol"), # default: 1024L
verbose = getOption("datatable.verbose")) # default: FALSE

Arguments

x Any type of vector, including data.table which is a list vector of column
pointers.

DT A data.table.

truelength 133

n The number of spare column pointer slots to ensure are available. If DT is a 1,000
column data.table with 24 spare slots remaining, n=1024L means grow the 24
spare slots to be 1024. truelength(DT) will then be 2024 in this example.

verbose Output status and information.

Details

When adding columns by reference using :=, we could simply create a new column list vector
(one longer) and memcpy over the old vector, with no copy of the column vectors themselves.
That requires negligible use of space and time, and is what v1.7.2 did. However, that copy of the
list vector of column pointers only (but not the columns themselves), a shallow copy, resulted in
inconsistent behaviour in some circumstances. So, as from v1.7.3 data.table over allocates the list
vector of column pointers so that columns can be added fully by reference, consistently.

When the allocated column pointer slots are used up, to add a new column data.table must reallo-
cate that vector. If two or more variables are bound to the same data.table this shallow copy may or
may not be desirable, but we don’t think this will be a problem very often (more discussion may be
required on data.table issue tracker). Setting options(datatable.verbose=TRUE) includes mes-
sages if and when a shallow copy is taken. To avoid shallow copies there are several options: use
copy to make a deep copy first, use setalloccol to reallocate in advance, or, change the default
allocation rule (perhaps in your .Rprofile); e.g., options(datatable.alloccol=10000L).

Please note : over allocation of the column pointer vector is not for efficiency per se; it is so that :=
can add columns by reference without a shallow copy.

Value

truelength(x) returns the length of the vector allocated in memory. length(x) of those items are
in use. Currently, it is just the list vector of column pointers that is over-allocated (i.e. truelength(DT)),
not the column vectors themselves, which would in future allow fast row insert(). For tables
loaded from disk however, truelength is 0 in R 2.14.0+ (and random in R <= 2.13.2), which is
perhaps unexpected. data.table detects this state and over-allocates the loaded data.table when
the next column addition occurs. All other operations on data.table (such as fast grouping and
joins) do not need truelength.

setalloccol reallocates DT by reference. This may be useful for efficiency if you know you are
about to going to add a lot of columns in a loop. It also returns the new DT, for convenience in
compound queries.

See Also

copy

Examples

DT = data.table(a=1:3,b=4:6)
length(DT) # 2 column pointer slots used
truelength(DT) # 1026 column pointer slots allocated
setalloccol(DT, 2048)
length(DT) # 2 used
truelength(DT) # 2050 allocated, 2048 free
DT[,c:=7L] # add new column by assigning to spare slot

134 tstrsplit

truelength(DT)-length(DT) # 2047 slots spare

tstrsplit strsplit and transpose the resulting list efficiently

Description

This is equivalent to transpose(strsplit(...)). This is a convenient wrapper function to split a
column using strsplit and assign the transposed result to individual columns. See examples.

Usage

tstrsplit(x, ..., fill=NA, type.convert=FALSE, keep, names=FALSE)

Arguments

x The vector to split (and transpose).

... All the arguments to be passed to strsplit.

fill Default is NA. It is used to fill shorter list elements so as to return each element
of the transposed result of equal lengths.

type.convert TRUE calls type.convert with as.is=TRUE on the columns. May also be a
function, list of functions, or named list of functions to apply to each part; see
examples.

keep Specify indices corresponding to just those list elements to retain in the trans-
posed result. Default is to return all.

names TRUE auto names the list with V1, V2 etc. Default (FALSE) is to return an un-
named list.

Details

It internally calls strsplit first, and then transpose on the result.

names argument can be used to return an auto named list, although this argument does not have
any effect when used with :=, which requires names to be provided explicitly. It might be useful in
other scenarios.

Value

A transposed list after splitting by the pattern provided.

See Also

data.table, transpose, type.convert

update_dev_pkg 135

Examples

x = c("abcde", "ghij", "klmnopq")
strsplit(x, "", fixed=TRUE)
tstrsplit(x, "", fixed=TRUE)
tstrsplit(x, "", fixed=TRUE, fill="<NA>")

using keep to return just 1,3,5
tstrsplit(x, "", fixed=TRUE, keep=c(1,3,5))

names argument
tstrsplit(x, "", fixed=TRUE, keep=c(1,3,5), names=LETTERS[1:3])

DT = data.table(x=c("A/B", "A", "B"), y=1:3)
DT[, c("c1") := tstrsplit(x, "/", fixed=TRUE, keep=1L)][]
DT[, c("c1", "c2") := tstrsplit(x, "/", fixed=TRUE)][]

type.convert argument
DT = data.table(

w = c("Yes/F", "No/M"),
x = c("Yes 2000-03-01 A/T", "No 2000-04-01 E/R"),
y = c("1/1/2", "2/5/2.5"),
z = c("Yes/1/2", "No/5/3.5"),
v = c("Yes 10 30.5 2000-03-01 A/T", "No 20 10.2 2000-04-01 E/R"))

convert each element in the transpose list to type factor
DT[, tstrsplit(w, "/", type.convert=as.factor)]

convert part and leave any others
DT[, tstrsplit(z, "/", type.convert=list(as.numeric=2:3))]

convert part with one function and any others with another
DT[, tstrsplit(z, "/", type.convert=list(as.factor=1L, as.numeric))]

convert the remaining using 'type.convert(x, as.is=TRUE)' (i.e. what type.convert=TRUE does)
DT[, tstrsplit(v, " ", type.convert=list(as.IDate=4L, function(x) type.convert(x, as.is=TRUE)))]

update_dev_pkg Perform update of development version of a package

Description

Downloads and installs latest development version, only when a new commit is available. Defaults
are set to update data.table, other packages can be used as well. Repository of a package has to
include git commit SHA information in PACKAGES file.

Usage

update_dev_pkg(pkg="data.table",
repo="https://Rdatatable.gitlab.io/data.table",
field="Revision", type=getOption("pkgType"), lib=NULL, ...)

136 update_dev_pkg

Arguments

pkg character scalar, package name.

repo character scalar, url of package devel repository.

field character scalar, metadata field to use in PACKAGES file and DESCRIPTION
file, default "Revision".

type character scalar, default getOption("pkgType"), used to define if package has
to be installed from sources, binaries or both.

lib character scalar, library location where package is meant to be upgraded.

... passed to install.packages.

Details

In case if a devel repository does not provide binaries user will need development tools installed for
package compilation, like Rtools on Windows, or alternatively eventually set type="source".

Value

Invisibly TRUE if package was updated, otherwise FALSE.

data.table repositories

By default the function uses our GitLab-hosted R repository at https://Rdatatable.gitlab.io/data.table.
This repository is updated nightly. It runs multiple test jobs (on top of GitHub tests jobs run up-
stream) and publish the package (sources and binaries), even if GitLab test jobs are failing. Status
of GitLab test jobs can be checked at Package Check Results.
We also publish bleeding edge version of the package on GitHub-hosted R repository at https://Rdatatable.gitlab.io/data.table
(just minor change in url from lab to hub). GitHub version should be considered less stable than
GitLab one. It publishes only package sources.
There are also other repositories maintained by R community, for example https://rdatatable.r-universe.dev.
Those can be used as well, but as they are unlikely to provide git commit SHA, the function will
install the package even if latest version is already installed.

Note

Package namespace is unloaded before attempting to install newer version.

See Also

data.table

Examples

if (FALSE) data.table::update_dev_pkg()

https://rdatatable.gitlab.io/data.table/web/checks/check_results_data.table.html

Index

∗ array
as.matrix, 24

∗ classes
data.table-class, 31

∗ data
.Last.updated, 14
:=, 15
address, 19
as.data.table, 22
between, 26
cdt, 28
chmatch, 28
copy, 30
data.table-package, 3
datatable.optimize, 32
dcast.data.table, 35
duplicated, 38
fcase, 41
fcoalesce, 43
fdroplevels, 44
fifelse, 45
foverlaps, 46
frank, 49
fread, 51
fwrite, 61
groupingsets, 66
J, 72
last, 73
like, 74
measure, 76
melt.data.table, 77
merge, 81
na.omit.data.table, 83
nafill, 85
patterns, 87
rbindlist, 91
rleid, 93
roll, 94
rowid, 98

setattr, 100
setcolorder, 102
setDF, 103
setDT, 104
setkey, 108
setNumericRounding, 111
setops, 112
setorder, 114
shift, 116
special-symbols, 119
split, 121
subset.data.table, 123
substitute2, 124
tables, 126
test, 127
test.data.table, 129
timetaken, 130
transpose, 131
truelength, 132
tstrsplit, 134
update_dev_pkg, 135

∗ methods
data.table-class, 31

∗ utilities
IDateTime, 68

. (data.table-package), 3

.. (data.table-package), 3

.BY, 5

.BY (special-symbols), 119

.EACHI (special-symbols), 119

.GRP, 5

.GRP (special-symbols), 119

.I, 5

.I (special-symbols), 119

.Last.updated, 14, 16, 17

.N, 5

.N (special-symbols), 119

.NATURAL (special-symbols), 119

.NGRP (special-symbols), 119

137

138 INDEX

.SD, 5, 7

.SD (special-symbols), 119
:=, 9, 14, 15, 23, 30, 31, 100–105, 109, 110,

114, 116, 120
[.data.frame, 4, 9
[.data.table, 73, 74, 82, 108
[.data.table (data.table-package), 3
%between% (between), 26
%chin% (chmatch), 28
%flike% (like), 74
%ilike% (like), 74
%inrange% (between), 26
%like% (like), 74
%notin% (notin), 86
%plike% (like), 74
%chin%, 27
%in%, 29

address, 19, 31
all.equal, 20, 20, 21, 40
all.equal.data.table, 113
alloc.col (truelength), 132
anyDuplicated, 9, 113
anyDuplicated (duplicated), 38
array, 25
as.character.ITime (IDateTime), 68
as.data.table, 4, 9, 20, 22, 104, 105
as.data.table.xts, 23, 26
as.Date, 71
as.Date.IDate (IDateTime), 68
as.IDate (IDateTime), 68
as.ITime (IDateTime), 68
as.list.IDate (IDateTime), 68
as.matrix, 24, 25
as.POSIXct, 71
as.POSIXct.IDate (IDateTime), 68
as.POSIXct.ITime (IDateTime), 68
as.POSIXlt.ITime (IDateTime), 68
as.vector, 25
as.xts.data.table, 24, 25
as.yaml, 63
auto-index (datatable.optimize), 32
auto-indexing (datatable.optimize), 32
autoindex (datatable.optimize), 32
autoindexing (datatable.optimize), 32

base::grepl, 75
base::tempdir, 54
between, 26, 107

bquote, 5

c.IDate (IDateTime), 68
c.ITime (IDateTime), 68
call, 125
cdatatable (cdt), 28
cdt, 28
charmatch, 29
chgroup (chmatch), 28
chmatch, 28, 86
chorder, 109, 110
chorder (chmatch), 28
CJ, 6, 9, 23, 107
CJ (J), 72
class:data.table (data.table-class), 31
copy, 9, 17, 20, 23, 30, 101, 103–105, 110,

115, 116, 119, 133
cube (groupingsets), 66

data.frame, 4, 9, 105
data.matrix, 25
data.table, 17, 23, 25, 27, 31, 32, 40, 44, 48,

50, 67, 73, 82, 84, 85, 92, 94, 96, 99,
101, 104, 105, 110, 113, 117,
119–122, 127, 130, 131, 134, 136

data.table (data.table-package), 3
data.table-class, 31
data.table-optimize

(datatable.optimize), 32
data.table-package, 3
data.table.optimize

(datatable.optimize), 32
datatable-optimize

(datatable.optimize), 32
datatable-symbols (special-symbols), 119
datatable.optimize, 32
DateTimeClasses, 71
dcast, 79
dcast (dcast.data.table), 35
dcast.data.table, 35, 99
download.file, 56
droplevels (fdroplevels), 44
duplicated, 38, 40, 44, 113

eval, 125
except (setops), 112

fastorder (setorder), 114
fcase, 41, 45

INDEX 139

fcoalesce, 43, 45, 107
fdroplevels, 44
fexcept (setops), 112
fifelse, 41–43, 45, 107
fill (nafill), 85
fintersect, 9, 40
fintersect (setops), 112
first (last), 73
forder, 49, 107
forder (setorder), 114
forderv (setorder), 114
format, 25
format.ITime (IDateTime), 68
format_col (print.data.table), 88
format_list_item (print.data.table), 88
foverlaps, 46
frank, 9, 49
frankv (frank), 49
fread, 51, 64, 107
froll, 108
froll (roll), 94
frollapply (roll), 94
frollmean (roll), 94
frollsum (roll), 94
fsetdiff, 9, 40
fsetdiff (setops), 112
fsetequal, 9, 40
fsetequal (setops), 112
fsort, 60
funion, 9, 40
funion (setops), 112
fwrite, 57, 61, 108

getDTthreads (setDTthreads), 106
getNumericRounding, 34, 103
getNumericRounding

(setNumericRounding), 111
getS3method, 89
GForce, 108
GForce (datatable.optimize), 32
gforce (datatable.optimize), 32
grep, 87, 110
groupingsets, 66

haskey (setkey), 108
head, 74
hour (IDateTime), 68

I, 124, 125

I (substitute2), 124
IDate, 51
IDate (IDateTime), 68
IDate-class (IDateTime), 68
IDateTime, 9, 68
ifelse, 45
ifelse (fifelse), 45
in, 86
index, 89
indices, 126
indices (setkey), 108
inrange (between), 26
install.packages, 136
integer64, 20
intersect (setops), 112
is.data.table (as.data.table), 22
is.na.data.table (data.table-package), 3
is.numeric, 7
isoweek (IDateTime), 68
ITime (IDateTime), 68
ITime-class (IDateTime), 68

J, 9, 23, 72, 110

key, 24, 89
key (setkey), 108

lag (shift), 116
last, 73
Last.updated (.Last.updated), 14
lead (shift), 116
let (:=), 15
like, 27, 74
locf (nafill), 85
ls, 127

make.names, 53
match, 29, 86
mday (IDateTime), 68
mean, 95
mean.IDate (IDateTime), 68
mean.ITime (IDateTime), 68
measure, 76, 78, 79
measurev (measure), 76
melt, 76, 87
melt (melt.data.table), 77
melt.data.table, 37, 77, 87
merge, 81, 82
merge.data.frame, 82

140 INDEX

merge.data.table, 9, 23
minute (IDateTime), 68
month (IDateTime), 68
moving (roll), 94

na.fill (nafill), 85
na.omit, 9
na.omit (na.omit.data.table), 83
na.omit.data.table, 83
nafill, 85, 108
name, 125
nocb (nafill), 85
notin, 86
NROW, 74

object.size, 127
objects, 127
openMP (setDTthreads), 106
openmp (setDTthreads), 106
Ops.data.table (data.table-package), 3
options, 64
order, 115
order (setorder), 114

path.expand, 52
patterns, 78, 79, 87
POSIXct, 51
print.data.table, 88
print.default, 89
print.ITime (IDateTime), 68

quarter (IDateTime), 68

rank, 50
rank (frank), 49
rbind (rbindlist), 91
rbindlist, 9, 23, 67, 91, 113, 122
read.csv, 57
read.csv(), 51
read.delim(), 51
rep.IDate (IDateTime), 68
rep.ITime (IDateTime), 68
rle, 93
rleid, 9, 93, 99
rleidv (rleid), 93
roll, 94
rollapply (roll), 94
rolling (roll), 94
rollmean (roll), 94

rollsum (roll), 94
rollup (groupingsets), 66
round, 70
round.IDate (IDateTime), 68
round.ITime (IDateTime), 68
rounding (datatable.optimize), 32
rowid, 9, 37, 94, 98
rowidv (rowid), 98
rowwiseDT, 9, 99

second (IDateTime), 68
seq.IDate (IDateTime), 68
seq.ITime (IDateTime), 68
set, 17, 31, 101, 103–105, 110, 116, 120
set (:=), 15
setalloccol, 9, 17, 23
setalloccol (truelength), 132
setattr, 31, 100, 103–105, 110, 116
setcoalesce (fcoalesce), 43
setcolorder, 101, 102, 104, 105, 110, 116
setDF, 9, 22, 23, 31, 101, 103, 103, 105, 110,

116
setdiff (setops), 112
setdroplevels (fdroplevels), 44
setDT, 9, 22, 23, 31, 101, 103, 104, 104, 110,

116
setDTthreads, 57, 64, 106
setequal (setops), 112
setindex (setkey), 108
setindexv, 54
setindexv (setkey), 108
setkey, 4, 9, 23, 29, 31, 50, 54, 82, 101,

103–105, 108, 115, 116, 127
setkeyv, 22, 24, 105
setkeyv (setkey), 108
setnafill (nafill), 85
setnames, 31, 103–105, 110, 116
setnames (setattr), 100
setNumericRounding, 9, 23, 34, 40, 48, 103,

110, 111, 116
setops, 112
setorder, 9, 31, 32, 50, 101, 103–105, 109,

110, 114
setorderv (setorder), 114
shift, 85, 96, 116
shouldPrint, 118
SJ, 9, 23
SJ (J), 72
sliding (roll), 94

INDEX 141

sort, 109
sort.list, 110
special-symbols, 119
split, 121
split.data.frame, 121
split.data.table, 92
storage.mode, 48
strptime, 71
strsplit, 134
strsplit (tstrsplit), 134
subset, 123
subset (subset.data.table), 123
subset.data.table, 123
substitute, 124, 125
substitute (substitute2), 124
substitute2, 8, 124
Sys.setlocale, 57
Sys.unsetenv, 128
system, 56

tables, 9, 110, 126
tail, 74
tempdir, 56
test, 127, 130
test.data.table, 9, 73, 127, 128, 129
timetaken, 130
transpose, 131, 134
truelength, 9, 17, 23, 132
trunc.ITime (IDateTime), 68
try, 129
tstrsplit, 131, 134
type.convert, 134

union (setops), 112
unique, 40, 44, 113
unique (duplicated), 38
unique.data.frame, 39
unique.data.table, 9
uniqueN, 9, 113
uniqueN (duplicated), 38
update_dev_pkg, 135
url, 57
utils::read.csv, 53
utils::write.csv, 54

wday (IDateTime), 68
week (IDateTime), 68
write.csv, 64
write.table, 64

yaml.load, 54
yday (IDateTime), 68
year (IDateTime), 68
yearmon (IDateTime), 68
yearqtr (IDateTime), 68

	data.table-package
	.Last.updated
	:=
	address
	all.equal
	as.data.table
	as.data.table.xts
	as.matrix
	as.xts.data.table
	between
	cdt
	chmatch
	copy
	data.table-class
	datatable.optimize
	dcast.data.table
	duplicated
	fcase
	fcoalesce
	fdroplevels
	fifelse
	foverlaps
	frank
	fread
	fsort
	fwrite
	groupingsets
	IDateTime
	J
	last
	like
	measure
	melt.data.table
	merge
	na.omit.data.table
	nafill
	notin
	patterns
	print.data.table
	rbindlist
	rleid
	roll
	rowid
	rowwiseDT
	setattr
	setcolorder
	setDF
	setDT
	setDTthreads
	setkey
	setNumericRounding
	setops
	setorder
	shift
	shouldPrint
	special-symbols
	split
	subset.data.table
	substitute2
	tables
	test
	test.data.table
	timetaken
	transpose
	truelength
	tstrsplit
	update_dev_pkg
	Index

