Translations of this document are available in
This vignette will explain the most common ways to use the
.SD
variable in your data.table
analyses. It
is an adaptation of this answer
given on StackOverflow.
.SD
?In the broadest sense, .SD
is just shorthand for
capturing a variable that comes up frequently in the context of data
analysis. It can be understood to stand for Subset,
Selfsame, or Self-reference of the Data. That
is, .SD
is in its most basic guise a reflexive
reference to the data.table
itself – as we’ll see in
examples below, this is particularly helpful for chaining together
“queries” (extractions/subsets/etc using [
). In particular,
this also means that .SD
is itself a
data.table
(with the caveat that it does not allow
assignment with :=
).
The simpler usage of .SD
is for column subsetting (i.e.,
when .SDcols
is specified); as this version is much more
straightforward to understand, we’ll cover that first below. The
interpretation of .SD
in its second usage, grouping
scenarios (i.e., when by =
or keyby =
is
specified), is slightly different, conceptually (though at core it’s the
same, since, after all, a non-grouped operation is an edge case of
grouping with just one group).
To give this a more real-world feel, rather than making up data,
let’s load some data sets about baseball from the Lahman database. In
typical R usage, we’d simply load these data sets from the
Lahman
R package; in this vignette, we’ve pre-downloaded
them directly from the package’s GitHub page instead.
load('Teams.RData')
setDT(Teams)
Teams
# yearID lgID teamID franchID divID Rank G Ghome W L DivWin WCWin LgWin
# <int> <fctr> <fctr> <fctr> <char> <int> <int> <int> <int> <int> <char> <char> <char>
# 1: 1871 NA BS1 BNA <NA> 3 31 NA 20 10 <NA> <NA> N
# 2: 1871 NA CH1 CNA <NA> 2 28 NA 19 9 <NA> <NA> N
# 3: 1871 NA CL1 CFC <NA> 8 29 NA 10 19 <NA> <NA> N
# 4: 1871 NA FW1 KEK <NA> 7 19 NA 7 12 <NA> <NA> N
# 5: 1871 NA NY2 NNA <NA> 5 33 NA 16 17 <NA> <NA> N
# ---
# 2891: 2018 NL SLN STL C 3 162 81 88 74 N N N
# 2892: 2018 AL TBA TBD E 3 162 81 90 72 N N N
# 2893: 2018 AL TEX TEX W 5 162 81 67 95 N N N
# 2894: 2018 AL TOR TOR E 4 162 81 73 89 N N N
# 2895: 2018 NL WAS WSN E 2 162 81 82 80 N N N
# WSWin R AB H X2B X3B HR BB SO SB CS HBP SF RA ER
# <char> <int> <int> <int> <int> <int> <int> <num> <int> <num> <num> <num> <int> <int> <int>
# 1: <NA> 401 1372 426 70 37 3 60 19 73 16 NA NA 303 109
# 2: <NA> 302 1196 323 52 21 10 60 22 69 21 NA NA 241 77
# 3: <NA> 249 1186 328 35 40 7 26 25 18 8 NA NA 341 116
# 4: <NA> 137 746 178 19 8 2 33 9 16 4 NA NA 243 97
# 5: <NA> 302 1404 403 43 21 1 33 15 46 15 NA NA 313 121
# ---
# 2891: N 759 5498 1369 248 9 205 525 1380 63 32 80 48 691 622
# 2892: N 716 5475 1415 274 43 150 540 1388 128 51 101 50 646 602
# 2893: N 737 5453 1308 266 24 194 555 1484 74 35 88 34 848 783
# 2894: N 709 5477 1336 320 16 217 499 1387 47 30 58 37 832 772
# 2895: N 771 5517 1402 284 25 191 631 1289 119 33 59 40 682 649
# ERA CG SHO SV IPouts HA HRA BBA SOA E DP FP
# <num> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <num>
# 1: 3.55 22 1 3 828 367 2 42 23 243 24 0.834
# 2: 2.76 25 0 1 753 308 6 28 22 229 16 0.829
# 3: 4.11 23 0 0 762 346 13 53 34 234 15 0.818
# 4: 5.17 19 1 0 507 261 5 21 17 163 8 0.803
# 5: 3.72 32 1 0 879 373 7 42 22 235 14 0.840
# ---
# 2891: 3.85 1 8 43 4366 1354 144 593 1337 133 151 0.978
# 2892: 3.74 0 14 52 4345 1236 164 501 1421 85 136 0.986
# 2893: 4.92 1 5 42 4293 1516 222 491 1121 120 168 0.980
# 2894: 4.85 0 3 39 4301 1476 208 551 1298 101 138 0.983
# 2895: 4.04 2 7 40 4338 1320 198 487 1417 64 115 0.989
# name park attendance BPF PPF teamIDBR
# <char> <char> <int> <int> <int> <char>
# 1: Boston Red Stockings South End Grounds I NA 103 98 BOS
# 2: Chicago White Stockings Union Base-Ball Grounds NA 104 102 CHI
# 3: Cleveland Forest Citys National Association Grounds NA 96 100 CLE
# 4: Fort Wayne Kekiongas Hamilton Field NA 101 107 KEK
# 5: New York Mutuals Union Grounds (Brooklyn) NA 90 88 NYU
# ---
# 2891: St. Louis Cardinals Busch Stadium III 3403587 97 96 STL
# 2892: Tampa Bay Rays Tropicana Field 1154973 97 97 TBR
# 2893: Texas Rangers Rangers Ballpark in Arlington 2107107 112 113 TEX
# 2894: Toronto Blue Jays Rogers Centre 2325281 97 98 TOR
# 2895: Washington Nationals Nationals Park 2529604 106 105 WSN
# teamIDlahman45 teamIDretro
# <char> <char>
# 1: BS1 BS1
# 2: CH1 CH1
# 3: CL1 CL1
# 4: FW1 FW1
# 5: NY2 NY2
# ---
# 2891: SLN SLN
# 2892: TBA TBA
# 2893: TEX TEX
# 2894: TOR TOR
# 2895: MON WAS
load('Pitching.RData')
setDT(Pitching)
Pitching
# playerID yearID stint teamID lgID W L G GS CG SHO SV IPouts H
# <char> <int> <int> <fctr> <fctr> <int> <int> <int> <int> <int> <int> <int> <int> <int>
# 1: bechtge01 1871 1 PH1 NA 1 2 3 3 2 0 0 78 43
# 2: brainas01 1871 1 WS3 NA 12 15 30 30 30 0 0 792 361
# 3: fergubo01 1871 1 NY2 NA 0 0 1 0 0 0 0 3 8
# 4: fishech01 1871 1 RC1 NA 4 16 24 24 22 1 0 639 295
# 5: fleetfr01 1871 1 NY2 NA 0 1 1 1 1 0 0 27 20
# ---
# 46695: zamorda01 2018 1 NYN NL 1 0 16 0 0 0 0 27 6
# 46696: zastrro01 2018 1 CHN NL 1 0 6 0 0 0 0 17 6
# 46697: zieglbr01 2018 1 MIA NL 1 5 53 0 0 0 10 156 49
# 46698: zieglbr01 2018 2 ARI NL 1 1 29 0 0 0 0 65 22
# 46699: zimmejo02 2018 1 DET AL 7 8 25 25 0 0 0 394 140
# ER HR BB SO BAOpp ERA IBB WP HBP BK BFP GF R SH SF
# <int> <int> <int> <int> <num> <num> <int> <int> <num> <int> <int> <int> <int> <int> <int>
# 1: 23 0 11 1 NA 7.96 NA 7 NA 0 146 0 42 NA NA
# 2: 132 4 37 13 NA 4.50 NA 7 NA 0 1291 0 292 NA NA
# 3: 3 0 0 0 NA 27.00 NA 2 NA 0 14 0 9 NA NA
# 4: 103 3 31 15 NA 4.35 NA 20 NA 0 1080 1 257 NA NA
# 5: 10 0 3 0 NA 10.00 NA 0 NA 0 57 0 21 NA NA
# ---
# 46695: 3 1 3 16 0.194 3.00 1 0 1 0 36 4 3 1 0
# 46696: 3 0 4 3 0.286 4.76 0 0 1 0 26 2 3 0 0
# 46697: 23 7 17 37 0.254 3.98 4 1 2 0 213 23 25 0 1
# 46698: 9 1 8 13 0.265 3.74 2 0 0 0 92 1 9 0 1
# 46699: 66 28 26 111 0.269 4.52 0 1 2 0 556 0 76 2 5
# GIDP
# <int>
# 1: NA
# 2: NA
# 3: NA
# 4: NA
# 5: NA
# ---
# 46695: 1
# 46696: 0
# 46697: 11
# 46698: 3
# 46699: 4
Readers up on baseball lingo should find the tables’ contents
familiar; Teams
records some statistics for a given team in
a given year, while Pitching
records statistics for a given
pitcher in a given year. Please do check out the documentation and explore
the data yourself a bit before proceeding to familiarize yourself with
their structure.
.SD
on Ungrouped DataTo illustrate what I mean about the reflexive nature of
.SD
, consider its most banal usage:
Pitching[ , .SD]
# playerID yearID stint teamID lgID W L G GS CG SHO SV IPouts H
# <char> <int> <int> <fctr> <fctr> <int> <int> <int> <int> <int> <int> <int> <int> <int>
# 1: bechtge01 1871 1 PH1 NA 1 2 3 3 2 0 0 78 43
# 2: brainas01 1871 1 WS3 NA 12 15 30 30 30 0 0 792 361
# 3: fergubo01 1871 1 NY2 NA 0 0 1 0 0 0 0 3 8
# 4: fishech01 1871 1 RC1 NA 4 16 24 24 22 1 0 639 295
# 5: fleetfr01 1871 1 NY2 NA 0 1 1 1 1 0 0 27 20
# ---
# 46695: zamorda01 2018 1 NYN NL 1 0 16 0 0 0 0 27 6
# 46696: zastrro01 2018 1 CHN NL 1 0 6 0 0 0 0 17 6
# 46697: zieglbr01 2018 1 MIA NL 1 5 53 0 0 0 10 156 49
# 46698: zieglbr01 2018 2 ARI NL 1 1 29 0 0 0 0 65 22
# 46699: zimmejo02 2018 1 DET AL 7 8 25 25 0 0 0 394 140
# ER HR BB SO BAOpp ERA IBB WP HBP BK BFP GF R SH SF
# <int> <int> <int> <int> <num> <num> <int> <int> <num> <int> <int> <int> <int> <int> <int>
# 1: 23 0 11 1 NA 7.96 NA 7 NA 0 146 0 42 NA NA
# 2: 132 4 37 13 NA 4.50 NA 7 NA 0 1291 0 292 NA NA
# 3: 3 0 0 0 NA 27.00 NA 2 NA 0 14 0 9 NA NA
# 4: 103 3 31 15 NA 4.35 NA 20 NA 0 1080 1 257 NA NA
# 5: 10 0 3 0 NA 10.00 NA 0 NA 0 57 0 21 NA NA
# ---
# 46695: 3 1 3 16 0.194 3.00 1 0 1 0 36 4 3 1 0
# 46696: 3 0 4 3 0.286 4.76 0 0 1 0 26 2 3 0 0
# 46697: 23 7 17 37 0.254 3.98 4 1 2 0 213 23 25 0 1
# 46698: 9 1 8 13 0.265 3.74 2 0 0 0 92 1 9 0 1
# 46699: 66 28 26 111 0.269 4.52 0 1 2 0 556 0 76 2 5
# GIDP
# <int>
# 1: NA
# 2: NA
# 3: NA
# 4: NA
# 5: NA
# ---
# 46695: 1
# 46696: 0
# 46697: 11
# 46698: 3
# 46699: 4
That is, Pitching[ , .SD]
has simply returned the whole
table, i.e., this was an overly verbose way of writing
Pitching
or Pitching[]
:
In terms of subsetting, .SD
is still a subset of the
data, it’s just a trivial one (the set itself).
.SDcols
The first way to impact what .SD
is is to limit the
columns contained in .SD
using the
.SDcols
argument to [
:
# W: Wins; L: Losses; G: Games
Pitching[ , .SD, .SDcols = c('W', 'L', 'G')]
# W L G
# <int> <int> <int>
# 1: 1 2 3
# 2: 12 15 30
# 3: 0 0 1
# 4: 4 16 24
# 5: 0 1 1
# ---
# 46695: 1 0 16
# 46696: 1 0 6
# 46697: 1 5 53
# 46698: 1 1 29
# 46699: 7 8 25
This is just for illustration and was pretty boring. In addition to
accepting a character vector, .SDcols
also accepts:
is.character
to filter
columnspatterns()
to filter column
names by regular expression*see ?patterns
for more details
This simple usage lends itself to a wide variety of highly beneficial / ubiquitous data manipulation operations:
Column type conversion is a fact of life for data munging. Though fwrite
recently gained the ability to declare the class of each column up
front, not all data sets come from fread
(e.g. in this
vignette) and conversions back and forth among
character
/factor
/numeric
types
are common. We can use .SD
and .SDcols
to
batch-convert groups of columns to a common type.
We notice that the following columns are stored as
character
in the Teams
data set, but might
more logically be stored as factor
s:
# teamIDBR: Team ID used by Baseball Reference website
# teamIDlahman45: Team ID used in Lahman database version 4.5
# teamIDretro: Team ID used by Retrosheet
fkt = c('teamIDBR', 'teamIDlahman45', 'teamIDretro')
# confirm that they're stored as `character`
str(Teams[ , ..fkt])
# Classes 'data.table' and 'data.frame': 2895 obs. of 3 variables:
# $ teamIDBR : chr "BOS" "CHI" "CLE" "KEK" ...
# $ teamIDlahman45: chr "BS1" "CH1" "CL1" "FW1" ...
# $ teamIDretro : chr "BS1" "CH1" "CL1" "FW1" ...
# - attr(*, ".internal.selfref")=<externalptr>
The syntax to now convert these columns to factor
is
simple:
Teams[ , names(.SD) := lapply(.SD, factor), .SDcols = patterns('teamID')]
# print out the first column to demonstrate success
head(unique(Teams[[fkt[1L]]]))
# [1] BOS CHI CLE KEK NYU ATH
# 101 Levels: ALT ANA ARI ATH ATL BAL BLA BLN BLU BOS BRA BRG BRO BSN BTT BUF BWW CAL CEN CHC ... WSN
Note:
:=
is an assignment operator to update the
data.table
in place without making a copy. See vignette("datatable-reference-semantics", package="data.table")
for more.names(.SD)
, indicates which columns we are
updating - in this case we update the entire .SD
.lapply()
, loops through each column of the
.SD
and converts the column to a factor..SDcols
to only select columns that have
pattern of teamID
.Again, the .SDcols
argument is quite flexible; above, we
supplied patterns
but we could have also supplied
fkt
or any character
vector of column names.
In other situations, it is more convenient to supply an
integer
vector of column positions or a
logical
vector dictating include/exclude for each column.
Finally, the use of a function to filter columns is very helpful.
For example, we could do the following to convert all
factor
columns to character
:
fct_idx = Teams[, which(sapply(.SD, is.factor))] # column numbers to show the class changing
str(Teams[[fct_idx[1L]]])
# Factor w/ 7 levels "AA","AL","FL",..: 4 4 4 4 4 4 4 4 4 4 ...
Teams[ , names(.SD) := lapply(.SD, as.character), .SDcols = is.factor]
str(Teams[[fct_idx[1L]]])
# chr [1:2895] "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" "NA" ...
Lastly, we can do pattern-based matching of columns in
.SDcols
to select all columns which contain
team
back to factor
:
Teams[ , .SD, .SDcols = patterns('team')]
# teamID teamIDBR teamIDlahman45 teamIDretro
# <char> <char> <char> <char>
# 1: BS1 BOS BS1 BS1
# 2: CH1 CHI CH1 CH1
# 3: CL1 CLE CL1 CL1
# 4: FW1 KEK FW1 FW1
# 5: NY2 NYU NY2 NY2
# ---
# 2891: SLN STL SLN SLN
# 2892: TBA TBR TBA TBA
# 2893: TEX TEX TEX TEX
# 2894: TOR TOR TOR TOR
# 2895: WAS WSN MON WAS
Teams[ , names(.SD) := lapply(.SD, factor), .SDcols = patterns('team')]
** A proviso to the above: explicitly using column numbers
(like DT[ , (1) := rnorm(.N)]
) is bad practice and can lead
to silently corrupted code over time if column positions change. Even
implicitly using numbers can be dangerous if we don’t keep smart/strict
control over the ordering of when we create the numbered index and when
we use it.
Varying model specification is a core feature of robust statistical
analysis. Let’s try and predict a pitcher’s ERA (Earned Runs Average, a
measure of performance) using the small set of covariates available in
the Pitching
table. How does the (linear) relationship
between W
(wins) and ERA
vary depending on
which other covariates are included in the specification?
Here’s a short script leveraging the power of .SD
which
explores this question:
# this generates a list of the 2^k possible extra variables
# for models of the form ERA ~ G + (...)
extra_var = c('yearID', 'teamID', 'G', 'L')
models = unlist(
lapply(0L:length(extra_var), combn, x = extra_var, simplify = FALSE),
recursive = FALSE
)
# here are 16 visually distinct colors, taken from the list of 20 here:
# https://sashat.me/2017/01/11/list-of-20-simple-distinct-colors/
col16 = c('#e6194b', '#3cb44b', '#ffe119', '#0082c8',
'#f58231', '#911eb4', '#46f0f0', '#f032e6',
'#d2f53c', '#fabebe', '#008080', '#e6beff',
'#aa6e28', '#fffac8', '#800000', '#aaffc3')
par(oma = c(2, 0, 0, 0))
lm_coef = sapply(models, function(rhs) {
# using ERA ~ . and data = .SD, then varying which
# columns are included in .SD allows us to perform this
# iteration over 16 models succinctly.
# coef(.)['W'] extracts the W coefficient from each model fit
Pitching[ , coef(lm(ERA ~ ., data = .SD))['W'], .SDcols = c('W', rhs)]
})
barplot(lm_coef, names.arg = sapply(models, paste, collapse = '/'),
main = 'Wins Coefficient\nWith Various Covariates',
col = col16, las = 2L, cex.names = 0.8)
The coefficient always has the expected sign (better pitchers tend to have more wins and fewer runs allowed), but the magnitude can vary substantially depending on what else we control for.
data.table
syntax is beautiful for its simplicity and
robustness. The syntax x[i]
flexibly handles three common
approaches to subsetting – when i
is a logical
vector, x[i]
will return those rows of x
corresponding to where i
is TRUE
; when
i
is another data.table
(or a
list
), a (right) join
is performed (in the
plain form, using the key
s of x
and
i
, otherwise, when on =
is specified, using
matches of those columns); and when i
is a character, it is
interpreted as shorthand for x[list(i)]
, i.e., as a
join.
This is great in general, but falls short when we wish to perform a conditional join, wherein the exact nature of the relationship among tables depends on some characteristics of the rows in one or more columns.
This example is admittedly a tad contrived, but illustrates the idea; see here (1, 2) for more.
The goal is to add a column team_performance
to the
Pitching
table that records the team’s performance (rank)
of the best pitcher on each team (as measured by the lowest ERA, among
pitchers with at least 6 recorded games).
# to exclude pitchers with exceptional performance in a few games,
# subset first; then define rank of pitchers within their team each year
# (in general, we should put more care into the 'ties.method' of frank)
Pitching[G > 5, rank_in_team := frank(ERA), by = .(teamID, yearID)]
Pitching[rank_in_team == 1, team_performance :=
Teams[.SD, Rank, on = c('teamID', 'yearID')]]
Note that the x[y]
syntax returns nrow(y)
values (i.e., it’s a right join), which is why .SD
is on
the right in Teams[.SD]
(since the RHS of :=
in this case requires nrow(Pitching[rank_in_team == 1])
values).
.SD
operationsOften, we’d like to perform some operation on our data at the
group level. When we specify by =
(or
keyby =
), the mental model for what happens when
data.table
processes j
is to think of your
data.table
as being split into many component
sub-data.table
s, each of which corresponds to a single
value of your by
variable(s):
In the case of grouping, .SD
is multiple in nature – it
refers to each of these sub-data.table
s,
one-at-a-time (slightly more accurately, the scope of
.SD
is a single sub-data.table
). This allows
us to concisely express an operation that we’d like to perform on
each sub-data.table
before the re-assembled result
is returned to us.
This is useful in a variety of settings, the most common of which are presented here:
Let’s get the most recent season of data for each team in the Lahman data. This can be done quite simply with:
# the data is already sorted by year; if it weren't
# we could do Teams[order(yearID), .SD[.N], by = teamID]
Teams[ , .SD[.N], by = teamID]
# teamID yearID lgID franchID divID Rank G Ghome W L DivWin WCWin LgWin WSWin
# <fctr> <int> <char> <char> <char> <int> <int> <int> <int> <int> <char> <char> <char> <char>
# 1: BS1 1875 NA BNA <NA> 1 82 NA 71 8 <NA> <NA> Y <NA>
# 2: CH1 1871 NA CNA <NA> 2 28 NA 19 9 <NA> <NA> N <NA>
# 3: CL1 1872 NA CFC <NA> 7 22 NA 6 16 <NA> <NA> N <NA>
# 4: FW1 1871 NA KEK <NA> 7 19 NA 7 12 <NA> <NA> N <NA>
# 5: NY2 1875 NA NNA <NA> 6 71 NA 30 38 <NA> <NA> N <NA>
# ---
# 145: ANA 2004 AL ANA W 1 162 81 92 70 Y N N N
# 146: ARI 2018 NL ARI W 3 162 81 82 80 N N N N
# 147: MIL 2018 NL MIL C 1 163 81 96 67 Y N N N
# 148: TBA 2018 AL TBD E 3 162 81 90 72 N N N N
# 149: MIA 2018 NL FLA E 5 161 81 63 98 N N N N
# R AB H X2B X3B HR BB SO SB CS HBP SF RA ER ERA
# <int> <int> <int> <int> <int> <int> <num> <int> <num> <num> <num> <int> <int> <int> <num>
# 1: 831 3515 1128 167 51 15 33 52 93 37 NA NA 343 152 1.87
# 2: 302 1196 323 52 21 10 60 22 69 21 NA NA 241 77 2.76
# 3: 174 943 272 28 5 0 17 13 12 3 NA NA 254 126 5.70
# 4: 137 746 178 19 8 2 33 9 16 4 NA NA 243 97 5.17
# 5: 328 2685 633 82 21 7 19 47 20 24 NA NA 425 174 2.46
# ---
# 145: 836 5675 1603 272 37 162 450 942 143 46 73 41 734 692 4.28
# 146: 693 5460 1283 259 50 176 560 1460 79 25 52 45 644 605 3.72
# 147: 754 5542 1398 252 24 218 537 1458 124 32 58 41 659 606 3.73
# 148: 716 5475 1415 274 43 150 540 1388 128 51 101 50 646 602 3.74
# 149: 589 5488 1303 222 24 128 455 1384 45 31 73 31 809 762 4.76
# CG SHO SV IPouts HA HRA BBA SOA E DP FP name
# <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <num> <char>
# 1: 60 10 17 2196 751 2 33 110 483 56 0.870 Boston Red Stockings
# 2: 25 0 1 753 308 6 28 22 229 16 0.829 Chicago White Stockings
# 3: 15 0 0 597 285 6 24 11 184 17 0.816 Cleveland Forest Citys
# 4: 19 1 0 507 261 5 21 17 163 8 0.803 Fort Wayne Kekiongas
# 5: 70 3 0 1910 718 4 21 77 526 30 0.838 New York Mutuals
# ---
# 145: 2 11 50 4363 1476 170 502 1164 90 126 0.985 Anaheim Angels
# 146: 2 9 39 4389 1313 174 522 1448 75 152 0.988 Arizona Diamondbacks
# 147: 0 14 49 4383 1259 173 553 1428 108 141 0.982 Milwaukee Brewers
# 148: 0 14 52 4345 1236 164 501 1421 85 136 0.986 Tampa Bay Rays
# 149: 1 12 30 4326 1388 192 605 1249 83 133 0.986 Miami Marlins
# park attendance BPF PPF teamIDBR teamIDlahman45 teamIDretro
# <char> <int> <int> <int> <fctr> <fctr> <fctr>
# 1: South End Grounds I NA 103 96 BOS BS1 BS1
# 2: Union Base-Ball Grounds NA 104 102 CHI CH1 CH1
# 3: National Association Grounds NA 96 100 CLE CL1 CL1
# 4: Hamilton Field NA 101 107 KEK FW1 FW1
# 5: Union Grounds (Brooklyn) NA 99 100 NYU NY2 NY2
# ---
# 145: Angels Stadium of Anaheim 3375677 97 97 ANA ANA ANA
# 146: Chase Field 2242695 108 107 ARI ARI ARI
# 147: Miller Park 2850875 102 101 MIL ML4 MIL
# 148: Tropicana Field 1154973 97 97 TBR TBA TBA
# 149: Marlins Park 811104 89 90 MIA FLO MIA
Recall that .SD
is itself a data.table
, and
that .N
refers to the total number of rows in a group (it’s
equal to nrow(.SD)
within each group), so
.SD[.N]
returns the entirety of .SD
for the final row associated with each teamID
.
Another common version of this is to use .SD[1L]
instead
to get the first observation for each group, or
.SD[sample(.N, 1L)]
to return a random row for
each group.
Suppose we wanted to return the best year for each team, as
measured by their total number of runs scored (R
; we could
easily adjust this to refer to other metrics, of course). Instead of
taking a fixed element from each sub-data.table
,
we now define the desired index dynamically as follows:
Teams[ , .SD[which.max(R)], by = teamID]
# teamID yearID lgID franchID divID Rank G Ghome W L DivWin WCWin LgWin WSWin
# <fctr> <int> <char> <char> <char> <int> <int> <int> <int> <int> <char> <char> <char> <char>
# 1: BS1 1875 NA BNA <NA> 1 82 NA 71 8 <NA> <NA> Y <NA>
# 2: CH1 1871 NA CNA <NA> 2 28 NA 19 9 <NA> <NA> N <NA>
# 3: CL1 1871 NA CFC <NA> 8 29 NA 10 19 <NA> <NA> N <NA>
# 4: FW1 1871 NA KEK <NA> 7 19 NA 7 12 <NA> <NA> N <NA>
# 5: NY2 1872 NA NNA <NA> 3 56 NA 34 20 <NA> <NA> N <NA>
# ---
# 145: ANA 2000 AL ANA W 3 162 81 82 80 N N N N
# 146: ARI 1999 NL ARI W 1 162 81 100 62 Y N N N
# 147: MIL 1999 NL MIL C 5 161 80 74 87 N N N N
# 148: TBA 2009 AL TBD E 3 162 81 84 78 N N N N
# 149: MIA 2017 NL FLA E 2 162 78 77 85 N N N N
# R AB H X2B X3B HR BB SO SB CS HBP SF RA ER ERA
# <int> <int> <int> <int> <int> <int> <num> <int> <num> <num> <num> <int> <int> <int> <num>
# 1: 831 3515 1128 167 51 15 33 52 93 37 NA NA 343 152 1.87
# 2: 302 1196 323 52 21 10 60 22 69 21 NA NA 241 77 2.76
# 3: 249 1186 328 35 40 7 26 25 18 8 NA NA 341 116 4.11
# 4: 137 746 178 19 8 2 33 9 16 4 NA NA 243 97 5.17
# 5: 523 2426 670 87 14 4 58 52 59 22 NA NA 362 172 3.02
# ---
# 145: 864 5628 1574 309 34 236 608 1024 93 52 47 43 869 805 5.00
# 146: 908 5658 1566 289 46 216 588 1045 137 39 48 60 676 615 3.77
# 147: 815 5582 1524 299 30 165 658 1065 81 33 55 51 886 813 5.07
# 148: 803 5462 1434 297 36 199 642 1229 194 61 49 45 754 686 4.33
# 149: 778 5602 1497 271 31 194 486 1282 91 30 67 41 822 772 4.82
# CG SHO SV IPouts HA HRA BBA SOA E DP FP name
# <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <num> <char>
# 1: 60 10 17 2196 751 2 33 110 483 56 0.870 Boston Red Stockings
# 2: 25 0 1 753 308 6 28 22 229 16 0.829 Chicago White Stockings
# 3: 23 0 0 762 346 13 53 34 234 15 0.818 Cleveland Forest Citys
# 4: 19 1 0 507 261 5 21 17 163 8 0.803 Fort Wayne Kekiongas
# 5: 54 3 1 1536 622 2 33 46 323 33 0.868 New York Mutuals
# ---
# 145: 5 3 46 4344 1534 228 662 846 134 182 0.978 Anaheim Angels
# 146: 16 9 42 4402 1387 176 543 1198 104 132 0.983 Arizona Diamondbacks
# 147: 2 5 40 4328 1618 213 616 987 127 146 0.979 Milwaukee Brewers
# 148: 3 5 41 4282 1421 183 515 1125 98 135 0.983 Tampa Bay Rays
# 149: 1 7 34 4328 1450 193 627 1202 73 156 0.988 Miami Marlins
# park attendance BPF PPF teamIDBR teamIDlahman45 teamIDretro
# <char> <int> <int> <int> <fctr> <fctr> <fctr>
# 1: South End Grounds I NA 103 96 BOS BS1 BS1
# 2: Union Base-Ball Grounds NA 104 102 CHI CH1 CH1
# 3: National Association Grounds NA 96 100 CLE CL1 CL1
# 4: Hamilton Field NA 101 107 KEK FW1 FW1
# 5: Union Grounds (Brooklyn) NA 93 92 NYU NY2 NY2
# ---
# 145: Edison International Field 2066982 102 103 ANA ANA ANA
# 146: Bank One Ballpark 3019654 101 101 ARI ARI ARI
# 147: County Stadium 1701796 99 99 MIL ML4 MIL
# 148: Tropicana Field 1874962 98 97 TBR TBA TBA
# 149: Marlins Park 1583014 93 93 MIA FLO MIA
Note that this approach can of course be combined with
.SDcols
to return only portions of the
data.table
for each .SD
(with the caveat that
.SDcols
should be fixed across the various subsets)
NB: .SD[1L]
is currently optimized by GForce
(see
also), data.table
internals which massively speed up
the most common grouped operations like sum
or
mean
– see ?GForce
for more details and keep
an eye on/voice support for feature improvement requests for updates on
this front: 1, 2, 3, 4, 5, 6
Returning to the inquiry above regarding the relationship between
ERA
and W
, suppose we expect this relationship
to differ by team (i.e., there’s a different slope for each team). We
can easily re-run this regression to explore the heterogeneity in this
relationship as follows (noting that the standard errors from this
approach are generally incorrect – the specification
ERA ~ W*teamID
will be better – this approach is easier to
read and the coefficients are OK):
# Overall coefficient for comparison
overall_coef = Pitching[ , coef(lm(ERA ~ W))['W']]
# use the .N > 20 filter to exclude teams with few observations
Pitching[ , if (.N > 20L) .(w_coef = coef(lm(ERA ~ W))['W']), by = teamID
][ , hist(w_coef, 20L, las = 1L,
xlab = 'Fitted Coefficient on W',
ylab = 'Number of Teams', col = 'darkgreen',
main = 'Team-Level Distribution\nWin Coefficients on ERA')]
abline(v = overall_coef, lty = 2L, col = 'red')
While there is indeed a fair amount of heterogeneity, there’s a distinct concentration around the observed overall value.
The above is just a short introduction of the power of
.SD
in facilitating beautiful, efficient code in
data.table
!